

Desktop 3rd Generation Intel[®] Core[™] Processor Family

Datasheet – Volume 2 of 2

June 2012

Document Number: 326765-002

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm.

Intel® Active Management Technology requires activation and a system with a corporate network connection, an Intel® AMTenabled chipset, network hardware and software. For notebooks, Intel AMT may be unavailable or limited over a host OS-based VPN, when connecting wirelessly, on battery power, sleeping, hibernating or powered off. Results dependent upon hardware, setup & configuration. For more information, visit http://www.intel.com/technology/platform-technology/intel-amt

No computer system can provide absolute security under all conditions. Intel® Trusted Execution Technology (Intel® TXT) requires a computer system with Intel® Virtualization Technology, an Intel TXT-enabled processor, chipset, BIOS, Authenticated Code Modules and an Intel TXT-compatible measured launched environment (MLE). Intel TXT also requires the system to contain a TPM v1.s. For more information, visit http://www.intel.com/technology/security

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual machine monitor (VMM). Functionality, performance or other benefits will vary depending on hardware and software configurations. Software applications may not be compatible with all operating systems. Consult your PC manufacturer. For more information, visit http://www.intel.com/go/virtualization

Warning: Altering clock frequency and/or voltage may (i) reduce system stability and useful life of the system and processor; (ii) cause the processor and other system components to fail; (iii) cause reductions in system performance; (iv) cause additional heat or other damage; and (v) affect system data integrity. Intel has not tested, and does not warranty, the operation of the processor beyond its specifications.

Hyper-Threading Technology requires a computer system with a processor supporting HT Technology and an HT Technologyenabled chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use. For more information including details on which processors support HT Technology, see htp://www.intel.com/info/hyperthreading.

"Intel® Turbo Boost Technology requires a PC with a processor with Intel Turbo Boost Technology capability. Intel Turbo Boost Technology performance varies depending on hardware, software and overall system configuration. Check with your PC manufacturer on whether your system delivers Intel Turbo Boost Technology.For more information, see http://www.intel.com/technology/turboboost."

Enhanced Intel SpeedStep[®] Technology See the <u>Processor Spec Finder</u> or contact your Intel repres

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and applications enabled for Intel® 64 architecture. Performance will vary depending on your hardware and software configurations. Consult with your system vendor for more information.

Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating system. Check with your PC manufacturer on whether your system delivers Execute Disable Bit functionality. Enhanced Intel SpeedStep® Technology: See the Processor Spec Finder at http://ark.intel.com or contact your Intel

representative for more information.

All products, platforms, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice. All dates specified are target dates, are provided for planning purposes only and are subject to change.

Intel, Intel Core, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2012, Intel Corporation. All rights reserved.

Contents

1	Intro	duction	1 13
2	Proce	essor Co	onfiguration Registers
	2.1	Registe	er Terminology
	2.2	PCI Dev	vices and Functions
	2.3	System	17 Address Map
		2.3.1	Legacy Address Range
			2.3.1.1 DOS Range (0h-9 FFFFh)
			2.3.1.2 Legacy Video Area (A_0000h-B_FFFFh)
			2.3.1.3 PAM (C_0000h-F_FFFh) 21
		2.3.2	Main Memory Address Range (1 MB – TOLUD)22
			2.3.2.1 ISA Hole (15 MB – 16 MB) 22
			2.3.2.2 TSEG
			2.3.2.3 Protected Memory Range (PMR) – (programmable)
			2.3.2.4 DRAM Protected Range (DPR)24
			2.3.2.5 Pre-allocated Memory
			2.3.2.6 Graphics Stolen Spaces
			2.5.2.7 Intel [®] Management Engine (Intel [®] ME) UMA
		2.3.3	PCI Memory Address Range (TOLOD - 4 GB)
			2.3.3.1 APIC CONINGURATION SPACE (FECU_0000N - FECF_FFFFN)
			2 3 3 3 MSI Interrupt Memory Space (FEE) 0000 – FEEF FEEF) 27
			2.3.3.4 High BIOS Area
		2.3.4	Main Memory Address Space (4 GB to TOUUD)
			2.3.4.1 Memory Re-claim Background
			2.3.4.2 Indirect Accesses to MCHBAR Registers
			2.3.4.3 Memory Remapping 29
			2.3.4.4 Hardware Remap Algorithm
			2.3.4.5 Programming Model 30
		2.3.5	PCI Express* Configuration Address Space
		2.3.6	PCI Express* Graphics Attach (PEG)
		2.3.7	Graphics Memory Address Ranges 36
			2.3.7.1 IOBAR Mapped Access to Device 2 MMIO Space
			2.3.7.2 Trusted Graphics Ranges
		2.3.8	System Management Mode (SMM)
		2.3.9	SMM and VGA Access through GTT TLB
		2.3.10	ME Stolen Memory Accesses 37
		2.3.11	I/O Address Space
			2.3.11.1 PCI Express* I/O Address Mapping
		2.3.12	MCTP and KVM Flows 39
		2.3.13	Decode Rules and Cross-Bridge Address Mapping
			2.3.13.1 DMI Interface Decode Rules
			2.3.13.2 PCI Express* Interface Decode Rules
	2.4		2.3.13.3 Legacy VGA and I/O Range Decode Rules
	2.4	I/O Ma	pped Registers
	2.5		VICE U FUNCTION U CONTIGURATION Space Registers
		2.5.1	VID—Venuor Identification Register
		2.5.2	DID—Device Identification Register
		2.5.3	PCICMD—PCI Command Register
		2.5.4	PUISIS—PUI Status Register
		2.3.5	KID—Revision Identification Register
		2.3.0 2 5 7	UCTUIASS COUR REVISIEI
		2.5./	SVID_Subsystem Vandar Identification Degister
		2.5.0	SVID—Subsystem Identification Degister
		2.5.5	Size Subsystem identification register minimum minimum 55

	2.5.10	CAPPTR—Capabilities Pointer Register
	2.5.11	PXPEPBAR—PCI Express* Egress Port Base Address Register
	2.5.12	MCHBAR—Host Memory Mapped Register Range Base Register
	2.5.13	GGC—GMCH Graphics Control Register
	2 5 14	DEVEN—Device Enable Register 57
	2 5 1 5	PAVPC—Protected Audio Video Path Control Register 59
	2.5.15	DPR—DMA Protected Range Register 59
	2.5.10	DCIEVBAD_DCI Express* Pagister Dange Base Address Degister 60
	2.5.17	DMIBAD—Poot Complex Projector Pango Base Address Projector 62
	2.5.10	MESEC BASE-Intol [®] Management Engine Base Address Register
	2.3.19	MESEC_MASK_Intel® Management Engine Limit Address Register
	2.5.20	MESEG_MASK—III.EI° Mallagement Engine Linit Address Register
	2.5.21	PAM0—Programmable Attribute Map 0 Register
	2.5.22	PAM1—Programmable Attribute Map 1 Register
	2.5.23	PAM2—Programmable Attribute Map 2 Register
	2.5.24	PAM3—Programmable Attribute Map 3 Register
	2.5.25	PAM4—Programmable Attribute Map 4 Register
	2.5.26	PAM5—Programmable Attribute Map 5 Register
	2.5.27	PAM6—Programmable Attribute Map 6 Register
	2.5.28	LAC—Legacy Access Control Register
	2.5.29	REMAPBASE—Remap Base Address Register
	2.5.30	REMAPLIMIT—Remap Limit Address Register
	2.5.31	TOM—Top of Memory Register77
	2.5.32	TOUUD—Top of Upper Usable DRAM Register
	2.5.33	BDSM—Base Data of Stolen Memory Register
	2.5.34	BGSM—Base of GTT Stolen Memory Register79
	2.5.35	TSEGMB—TSEG Memory Base Register80
	2.5.36	TOLUD—Top of Low Usable DRAM Register80
	2.5.37	SKPD—Scratchpad Data Register81
	2.5.38	CAPID0_A—Capabilities A Register82
	2.5.39	CAPID0_B—Capabilities B Register
	2.5.40	ERRSTS—Error Status Register86
	2.5.41	ERRCMD—Error Command Register87
	2.5.42	SMICMD—SMI Command Register88
	2.5.43	SCICMD—SCI Command Register88
2.6	PCI Devic	e 1 Function 0–2 Configuration Space Registers
	2.6.1	VID—Vendor Identification Register90
	2.6.2	DID—Device Identification Register91
	2.6.3	PCICMD—PCI Command Register
	2.6.4	PCISTS—PCI Status Register
	2.6.5	RID—Revision Identification Register95
	2.6.6	CC—Class Code Register95
	2.6.7	CL—Cache Line Size Register95
	2.6.8	HDR—Header Type Register96
	2.6.9	PBUSN—Primary Bus Number Register
	2.6.10	SBUSN—Secondary Bus Number Register
	2.6.11	SUBUSN—Subordinate Bus Number Register
	2.6.12	IOBASE—I/O Base Address Register
	2.6.13	IOLIMIT—I/O Limit Address Register
	2.6.14	SSTS—Secondary Status Register
	2.6.15	MBASE—Memory Base Address Register
	2.6.16	MLIMIT—Memory Limit Address Register
	2.6.17	PMBASE—Prefetchable Memory Base Address Register
	2.6.18	PMLIMIT—Prefetchable Memory Limit Address Register
	2.6.19	PMBASEU—Prefetchable Memory Base Address Upper Register
	2.6.20	PMLIMITU—Prefetchable Memory Limit Address Upper Register
	2.6.21	CAPPTR—Capabilities Pointer Register

	2.6.22	INTRLINE—Interrupt Line Register	105
	2.6.23	INTRPIN—Interrupt Pin Register	105
	2.6.24	BCTRL—Bridge Control Register	106
	2.6.25	PM CAPID—Power Management Capabilities Register	107
	2.6.26	PM CS-Power Management Control/Status Register	108
	2.6.27	SS CAPID—Subsystem ID and Vendor ID Capabilities Register	110
	2.6.28	SS—Subsystem ID and Subsystem Vendor ID Register	110
	2.6.29	MSI CAPID—Message Signaled Interrupts Capability ID Register	111
	2.6.30	MC—Message Control Register	112
	2.6.31	MA—Message Address Register	113
	2.6.32	MD-Message Data Register	113
	2.6.33	PEG CAPL—PCI Express-G Capability List Register	113
	2.6.34	PEG CAP-PCI Express-G Capabilities Register	114
	2.6.35	DCAP—Device Capabilities Register	114
	2.6.36	DCTL—Device Control Register	115
	2.6.37	DSTS—Device Status Register	116
	2.6.38	LCAP-Link Capabilities Register	117
	2.6.39	LCTL-Link Control Register	119
	2.6.40	LSTS-Link Status Register	121
	2.6.41	SLOTCAP—Slot Capabilities Register	122
	2.6.42	SLOTCTL—Slot Control Register	124
	2.6.43	SLOTSTS—Slot Status Register	126
	2.6.44	RCTL-Root Control Register	128
	2.6.45	RSTS-Root Status Register	129
	2.6.46	DCAP2—Device Capabilities 2 Register	130
	2.6.47	DCTL2—Device Control 2 Register	131
	2.6.48	LCAP2—Link Capabilities 2 Register	132
	2.6.49	LCTL2—Link Control 2 Register	132
	2.6.50	LSTS2—Link Status 2 Register	134
2.7	PCI Devic	e 1 Function 0–2 Extended Configuration Registers	135
	2.7.1	PVCCAP1—Port VC Capability Register 1	136
	2.7.2	PVCCAP2—Port VC Capability Register 2	136
	2.7.3	PVCCTL—Port VC Control Register	137
	2.7.4	VCORCAP—VCO Resource Capability Register	138
	2.7.5	VC0RCTL—VC0 Resource Control Register	139
	2.7.6	VC0RSTS—VC0 Resource Status Register	140
	2.7.7	PEG TC-PCI Express* Completion Timeout Register	140
	2.7.8	EQCTL0 1—Lane 0/1 Equalization Control Register	141
	2.7.9	EQCTL2 3—Lane 2/3 Equalization Control Register	142
	2.7.10	EQCTL4_5—Lane 4/5 Equalization Control Register	143
	2.7.11	EQCTL6 7—Lane 6/7 Equalization Control Register	144
	2.7.12	EQCTL8_9—Lane 8/9 Equalization Control Register	145
	2.7.13	EQCTL10_11—Lane 10/11 Equalization Control Register	146
	2.7.14	EQCTL12_13—Lane 12/13 Equalization Control Register	147
	2.7.15	EQCTL14_15—Lane 14/15 Equalization Control Register	148
	2.7.16	EQCFG—Equalization Configuration Register	149
2.8	PCI Devic	e 2 Configuration Space Registers	151
	2.8.1	VID2-Vendor Identification Register	152
	2.8.2	DID2—Device Identification Register	152
	2.8.3	PCICMD2—PCI Command Register	153
	2.8.4	PCISTS2—PCI Status Register	154
	2.8.5	RID2—Revision Identification Register	155
	2.8.6	CC—Class Code Register	155
	2.8.7	CLS—Cache Line Size Register	156
	2.8.8	MLT2—Master Latency Timer Register	156
	2.8.9	HDR2—Header Type Register	156

Mapped Range Address Register 157 2.8.12 IOBAR-I/O Base Address Register 159 2.8.13 SVID2-Subsystem Vendor Identification Register 159 2.8.14 SID2-Subsystem Identification Register 160 2.8.15 ROMADR-Video BIOS ROM Base Address Register 160 2.8.16 CAPPOINT-Capabilities Pointer Register 161 2.8.17 INTRLINE-Interrupt line Register 161 2.8.18 INTRLINE-Interrupt line Register 162 2.8.20 MAXLAT-Maximum Latency Register 162 2.8.21 MSAC-Multi Size Aperture Control Register 163 2.9.1 Index-MMIO Address Register 163 2.9.2 Data-MMIO Data Register 163 2.9.1 Dide-Vice Identification Register 166 2.10.1 VID-Vendor Identification Register 166 2.10.2 DID-Device Identification Register 170 2.10.5 RID-Revision Identification Register 171 2.10.6 CCC-Class Code Register 171 2.10.6 CC-Case Code Register 172		2.8.10	GTTMMADR—Graphics Translation Table, Memory
2.8.11 GMADR—Graphics Memory Range Address Register 159 2.8.13 SVID2—Subsystem Vendor Identification Register 159 2.8.14 SID2—Subsystem Vendor Identification Register 160 2.8.15 ROMADR—Video BIOS ROM Base Address Register 160 2.8.16 CAPPOINT—Capabilities Pointer Register 161 2.8.17 INTRLINE—Interrupt Line Register 161 2.8.18 MINGMT—Minimum Grant Register 161 2.8.20 MAXLAT—Maximum Latency Register 162 2.8.21 MAXLAT—Maximum Latency Register 163 2.9.1 Index—MMIO Address Register 163 2.9.2 Data—MMIO Data Register 163 2.10 PCI Device 6 Registers 164 2.10.1 VID—Vendor Identification Register 166 2.10.2 DID—Device Identification Register 166 2.10.3 PCI Device 6 Register 170 2.10.6 CC—Class Code Register 171 2.10.6 CC—Class Code Register 171 2.10.7 CL-Cache Line Size Register 172 2.10.1 SBUS—Secondary Bus Number Register 172			Mapped Range Address Register157
2.8.12 IOBAR-I/O Base Address Register 159 2.8.14 SVID2-Subsystem Vendor Identification Register 160 2.8.15 ROMADR-Video BIOS ROM Base Address Register 160 2.8.16 CAPPOINT-Capabilities Pointer Register 161 2.8.17 ROMADR-Video BIOS ROM Base Address Register 161 2.8.18 INTRLINE-Interrupt Line Register 161 2.8.19 MAXLAT-Maximum Latency Register 162 2.8.21 MAXLAT-Maximum Latency Register 163 2.9.1 Index-MIIO Address Register 163 2.9.2 Device 2 IO Registers 163 2.9.1 Index-MIIO Data Register 166 2.10.2 DID-Device Identification Register 166 2.10.1 VID-Vendor Identification Register 166 2.10.2 DID-Device Identification Register 170 2.10.5 RID-Revision Identification Register 171 2.10.6 CC-Cass Code Register 171 2.10.7 CL-Cache Line Size Register 172 2.10.1 SUBN-Secondary Bus Number Register 172 2.10.1 SUBLN-Secondary Status Register		2.8.11	GMADR—Graphics Memory Range Address Register158
2.8.13 SVID2—Subsystem Vendor Identification Register 160 2.8.15 ROMADR—Video BIOS ROM Base Address Register 160 2.8.16 CAPPOINT—Capabilities Pointer Register 160 2.8.17 INTRLINE—Interrupt Vin Register 161 2.8.18 INTRPIN—Interrupt Vin Register 161 2.8.19 MINGNT—Minimum Grant Register 161 2.8.20 MAXLAT—Maximum Latency Register 162 2.8.21 MSAC—Multi Size Aperture Control Register 163 2.9.1 Index—MMIO Address Register 163 2.9.2 Data—MMIO Data Register 163 2.9.1 VID—Device Identification Register 166 2.10.1 VID—Vendor Identification Register 166 2.10.2 DID—Device Identification Register 171 2.10.5 RID—Revision Identification Register 171 2.10.6 CC—Class Code Register 171 2.10.7 CL—Cache Line Size Register 172 2.10.8 HDR—Header Type Register 172 2.10.1 SUBUSM—Scondary Bus Number Register 172 2.10.2 SUSUM—Scondary Sus Number Register		2.8.12	IOBAR—I/O Base Address Register159
2.8.14 SID2—Subsystem Identification Register 160 2.8.16 CAPPOINT—Capabilities Pointer Register 160 2.8.16 CAPPOINT—Capabilities Pointer Register 161 2.8.17 INTRRINE—Interrupt Line Register 161 2.8.18 INTRRINE—Interrupt Pin Register 161 2.8.20 MAXLAT—Maximum Latency Register 162 2.8.21 MSAC—Multi Size Aperture Control Register 163 2.9.1 Index—MMIO Data Register 163 2.9.2 Data—MMIO Data Register 163 2.9.1 Index—MMIO Address Register 163 2.9.2 Data—MMIO Data Register 166 2.10.1 VID—Vendor Identification Register 166 2.10.2 DID—Device Identification Register 170 2.10.4 PCICMD—PCI Command Register 170 2.10.5 RID—Revision Identification Register 171 2.10.6 CC-Cass Code Register 171 2.10.6 CC-Cass Code Register 171 2.10.6 SBUSN—Subordinate Bus Number Register 172 2.10.1 SBUSN—Subordinate Bus Number Register 172		2.8.13	SVID2—Subsystem Vendor Identification Register159
2.8.15 ROMADR—Video BIOS ROM Base Address Register 160 2.8.17 INTRLINE—Interrupt Line Register 161 2.8.17 INTRLINE—Interrupt Pin Register 161 2.8.18 INTRPIN—Interrupt Pin Register 161 2.8.19 MINCONT—Minimum Grant Register 161 2.8.20 MAXLAT—Maximum Grant Register 162 2.8.21 MSAC—Multi Size Aperture Control Register 163 2.9.1 Index—MMIO Address Register 163 2.9.2 Data—MMIO Data Register 166 2.10 VID—Vendor Identification Register 166 2.10.2 DID—Device Identification Register 166 2.10.3 PCICMO—PCI Command Register 166 2.10.4 PCISTS—PCI Status Register 171 2.10.5 RID—Revision Identification Register 171 2.10.6 CC—Cache Line Size Register 171 2.10.7 CL—Cache Line Size Register 172 2.10.1 SUBIN—SubonAprimary Bus Number Register 172 2.10.1 SUBIN—SubonAprimary Bus Number Register 172 2.10.11 SUBIN—Subae Address Register 173		2.8.14	SID2—Subsystem Identification Register
2.8.16 CAPPOINT-Capabilities Pointer Register 161 2.8.17 INTRLINE-Interrupt Line Register 161 2.8.18 INTRPIN-Interrupt Pin Register 161 2.8.19 MINCMT-Minimum Grant Register 161 2.8.20 MAXLAT-Maximum Latency Register 162 2.9.20 MAXLAT-Maximum Latency Register 163 2.9.1 Index-MMIO Address Register 163 2.9.2 Data-MMIO Data Register 163 2.9.1 Index-MMIO Data Register 163 2.9.2 Data-MMIO Data Register 166 2.10.1 VIDVendor Identification Register 166 2.10.2 DID-Device Identification Register 166 2.10.3 PCICMD-PCI Command Register 170 2.10.6 CC-Class Code Register 171 2.10.6 CC-Cass Code Register 171 2.10.7 CL-Cache Line Size Register 172 2.10.10 SBUSN-Secondary Bus Number Register 172 2.10.11 SBUSN-Secondary Status Register 173 2.10.12 IOBASE-H/O Base Address Register 173 2.10.13 <		2.8.15	ROMADR—Video BIOS ROM Base Address Register
2.8.17 INTRLINE—Interrupt Line Register		2.8.16	CAPPOINT—Capabilities Pointer Register
2.8.18 INTRPIN—Interrupt Pin Register 161 2.8.19 MINGNT—Minimum Grant Register 161 2.8.20 MAXLAT—Maximum Latency Register 162 2.8.21 MSAC—Multi Size Aperture Control Register 163 2.9 Device 2 IO Registers 163 2.9.1 Index—MMIO Address Register 163 2.9.2 Data—MMIO Data Register 163 2.9.1 Data—MMIO Data Register 166 2.10.1 VID—Vendor Identification Register 166 2.10.2 DID—Device Identification Register 166 2.10.3 PCICMD—PCI Command Register 170 2.10.6 CC—Class Code Register 171 2.10.6 CC—Class Code Register 171 2.10.7 CL-Cache Line Size Register 171 2.10.8 HDR—Header Type Register 172 2.10.11 SUBUSN—Subordinate Bus Number Register 172 2.10.12 IDBASE—Jeet Address Register 173 2.10.13 IDLIMT—I/O Linit Address Register 173 2.10.14 SSTS—Secondary Status Register 175 2.10.15 MLIMIT		2.8.17	INTRLINE—Interrupt Line Register
2.8.19 MINGNT—Minimum Grant Řegister 161 2.8.20 MAXLAT—Maximum Latency Register 162 2.8.21 MSAC—Multi Size Aperture Control Register 163 2.9 Device 2 IO Registers 163 2.9.1 Index—MMIO Address Register 163 2.9.2 Data—MMIO Data Register 163 2.10 PCI Device 6 Registers 164 2.10.1 VID—Vendor Identification Register 166 2.10.2 DID—Device Identification Register 166 2.10.3 PCICMD—PCI Command Register 166 2.10.4 PCISTS—PCI Status Register 171 2.10.5 RID—Revision Identification Register 171 2.10.6 CC—Cache Line Size Register 171 2.10.7 CL—Cache Line Size Register 171 2.10.8 HDR—Header Type Register 172 2.10.10 SBUSN—Secondary Bus Number Register 172 2.10.11 SUBSN—Secondary Status Register 173 2.10.12 SUBSN—Secondary Status Register 173 2.10.13 IOLIMIT—I/O Limit Address Register 177 2.10.14		2.8.18	INTRPIN—Interrupt Pin Register
2.8.20 MAXLAT—Maximum Latency Řegister 162 2.8.21 MSAC—Multi Size Aperture Control Register 163 2.9.1 Index—MMIO Address Register 163 2.9.2 Data—MMIO Data Register 163 2.9.1 Index—MMIO Data Register 163 2.10 PCI Device 6 Registers 164 2.10.1 VID—Vendor Identification Register 166 2.10.2 DID—Device Identification Register 166 2.10.3 PCICMD—PCI Command Register 166 2.10.4 PCISTS—PCI Status Register 170 2.10.6 CC—Class Code Register 171 2.10.7 CL—Cache Line Size Register 171 2.10.8 HDR—Header Type Register 172 2.10.1 SUBUSN—Subordinate Bus Number Register 172 2.10.11 SUBUSN—Subordinate Bus Number Register 172 2.10.12 IOBASE—I/O Base Address Register 173 2.10.13 IOLIMIT—I/O Limit Address Register 173 2.10.14 SSTS—Secondary Status Register 176 2.10.15 MBASE—Memory Base Address Register 176 2.1		2.8.19	MINGNT—Minimum Grant Register
2.8.21 MSAC—Multi Size Aperture Control Register 162 2.9 Device 2 IO Registers 163 2.9.1 Index—MMIO Address Register 163 2.9.2 Data—MMIO Data Register 163 2.9.1 Index—MMIO Address Register 163 2.10 PCI Device 6 Registers 166 2.10.1 VID—Vendor Identification Register 166 2.10.2 DID—Device Identification Register 166 2.10.4 PCISTS—PCI Status Register 170 2.10.5 RID—Revision Identification Register 171 2.10.6 CC—Cacke Line Size Register 171 2.10.7 CL—Cache Line Size Register 171 2.10.8 BUR—Primary Bus Number Register 172 2.10.10 SBUSN—Secondary Bus Number Register 172 2.10.11 SUBASE—I/O Base Address Register 173 2.10.12 IOBASE—I/O Base Address Register 173 2.10.13 SUDLITT—I/O Limit Address Register 174 2.10.14 SBTS—Secondary Status Register 175 2.10.16 MLIMIT—Memory Limit Address Register 177 <t< td=""><td></td><td>2.8.20</td><td>MAXLAT—Maximum Latency Register</td></t<>		2.8.20	MAXLAT—Maximum Latency Register
2.9 Device 210 Registers 163 2.9.1 Index-MMIO Address Register 163 2.9.2 Data-MMIO Data Register 163 2.10 PCI Device 6 Registers 164 2.10.1 VID-Vendor Identification Register 165 2.10.2 DID-Device Identification Register 166 2.10.4 PCISTS-PCI Status Register 166 2.10.5 RID-Revision Identification Register 170 2.10.6 CC-Cass Code Register 171 2.10.7 CL-Cache Line Size Register 171 2.10.8 HDR-Header Type Register 172 2.10.10 SBUSN-Secondary Bus Number Register 172 2.10.10 SBUSN-Secondary Stus Register 173 2.10.11 SUBUSN-Secondary Stus Register 173 2.10.12 IOBASE-1/O Base Address Register 173 2.10.13 SILS-Memory Base Address Register 174 2.10.14 SSTS-Secondary Status Register 174 2.10.15 MBASE-Memory Limit Address Register 177 2.10.16 MLIMIT-Merefetchable Memory Limit Address Register 177 2.		2.8.21	MSAC—Multi Size Aperture Control Register
2.9.1 Index-MMIO Address Register 163 2.10 PCI Device 6 Registers 164 2.10.1 VID-Vendor Identification Register 165 2.10.2 DID-Device Identification Register 166 2.10.3 PCICMD-PCI Command Register 166 2.10.4 PCISTS-PCI Status Register 166 2.10.5 RID-Revision Identification Register 170 2.10.6 CC-Class Code Register 171 2.10.7 CL-Cache Line Size Register 171 2.10.8 HDR-Header Type Register 172 2.10.10 SBUSN-Secondary Bus Number Register 172 2.10.11 SUBUSN-Subordinate Bus Number Register 173 2.10.12 IDBASE-1/O Base Address Register 173 2.10.13 IOLINIT-1/O Limit Address Register 173 2.10.14 SSTS-Secondary Status Register 177 2.10.15 MBASE-Memory Base Address Register 177 2.10.14 SSTS-Secondary Status Register 177 2.10.15 MBASE-Prefetchable Memory Base Address Register 177 2.10.16 MLIMIT-Prefetchable Memory Limit Address Register	2.9	Device 2	IO Registers
2.9.2 Data—MMIO Data Register 163 2.10 PCI Device 6 Registers 164 2.10.1 VID—Vendor Identification Register 165 2.10.2 DID—Device Identification Register 166 2.10.3 PCICMD—PCI Command Register 166 2.10.4 PCISTS—PCI Status Register 170 2.10.5 RID—Revision Identification Register 171 2.10.6 CC—Class Code Register 171 2.10.7 CL—Cache Line Size Register 171 2.10.8 HDR—Header Type Register 172 2.10.1 SBUSN—Secondary Bus Number Register 172 2.10.1 SBUSN—Subordinate Bus Number Register 172 2.10.1 SBUSN—Subordinate Bus Number Register 173 2.10.11 SUBSN—Scondary Status Register 173 2.10.12 IOBASE—I/O Base Address Register 173 2.10.13 IOLIMIT—I/O Limit Address Register 174 2.10.14 SSTS—Secondary Status Register 175 2.10.15 MBASE—Prefetchable Memory Limit Address Register 177 2.10.16 MLIMIT—Prefetchable Memory Limit Address Register <td< td=""><td></td><td>2.9.1</td><td>Index—MMIO Address Register</td></td<>		2.9.1	Index—MMIO Address Register
2.10 PCI Device 6 Registers 164 2.10.1 VID—Vendor Identification Register 165 2.10.2 DID—Device Identification Register 166 2.10.3 PCICMD—PCI Command Register 166 2.10.4 PCISTS—PCI Status Register 169 2.10.5 RID—Revision Identification Register 170 2.10.6 CC—Class Code Register 171 2.10.7 CL—Cache Line Size Register 171 2.10.8 HDR—Header Type Register Register 172 2.10.10 SBUSN—Secondary Bus Number Register 172 2.10.11 SUBUSN—Subordinate Bus Number Register 172 2.10.12 IDBASE—I/O Base Address Register 173 2.10.13 IOLINIT—I/O Limit Address Register 173 2.10.14 SSTS—Secondary Status Register 174 2.10.15 MBASE—Prefetchable Memory Base Address Register 177 2.10.18 PMLIMIT—Prefetchable Memory Base Address Register 177 2.10.19 PMBASEU—Prefetchable Memory Base Address Register 177 2.10.19 PMBASEU—Prefetchable Memory Limit Address Register 179 2.10.20		2.9.2	Data—MMIO Data Register
2.10.1 VID—Vendor Identification Register 165 2.10.2 DID—Device Identification Register 166 2.10.3 PCIGND—PCI Command Register 166 2.10.4 PCISTS—PCI Status Register 169 2.10.5 RID—Revision Identification Register 170 2.10.6 CC—Class Code Register 171 2.10.7 CL—Cache Line Size Register 171 2.10.8 HDR—Header Type Register 172 2.10.10 SBUSN—Secondary Bus Number Register 172 2.10.11 SUBUSN—Secondary Bus Number Register 172 2.10.12 IOBASE—I/O Base Address Register 173 2.10.13 IOLIMIT—I/O Limit Address Register 173 2.10.14 SSTS—Secondary Status Register 175 2.10.15 MBASE—Memory Limit Address Register 176 2.10.16 MLIMIT—Prefetchable Memory Limit Address Register 177 2.10.19 PMBASE—Prefetchable Memory Limit Address Register 178 2.10.19 PMLIMIT—Prefetchable Memory Limit Address Register 178 2.10.19 PMLIMIT—Prefetchable Memory Limit Address Register 181 2.10.20	2.10	PCI Devic	e 6 Registers
2.10.2 DID—Device Identification Register 166 2.10.3 PCICMD—PCI Command Register 166 2.10.4 PCISTS—PCI Status Register 169 2.10.5 RID—Revision Identification Register 170 2.10.6 CC—Class Code Register 171 2.10.7 CL—Cache Line Size Register 171 2.10.8 HDR—Header Type Register 172 2.10.1 SUBUSN—Secondary Bus Number Register 172 2.10.10 SBUSN—Secondary Bus Number Register 172 2.10.11 SUBUSN—Subordinate Bus Number Register 173 2.10.12 IOBASE—I/O Base Address Register 173 2.10.13 IOLIMIT—I/O Limit Address Register 173 2.10.14 STST—Secondary Status Register 174 2.10.15 MBASE—Memory Base Address Register 177 2.10.16 MLIMIT—Prefetchable Memory Base Address Register 177 2.10.17 PMBASEU—Prefetchable Memory Base Address Register 177 2.10.18 PMLIMIT—Prefetchable Memory Limit Address Register 178 2.10.19 PMLMITU—Prefetchable Memory Limit Address Register 179 2.10.		2.10.1	VID—Vendor Identification Register
2.10.3 PCICMD—PCI Command Register 166 2.10.4 PCISTS—PCI Status Register 169 2.10.5 RID—Revision Identification Register 170 2.10.6 CC—Class Code Register 171 2.10.7 CL—Cache Line Size Register 171 2.10.8 HDR—Header Type Register 171 2.10.9 PBUSN—Primary Bus Number Register 172 2.10.10 SBUSN—Secondary Bus Number Register 172 2.10.11 SUBUSN—Subordinate Bus Number Register 173 2.10.12 IOBASE—I/O Base Address Register 173 2.10.13 IDILMIT—I/O Limit Address Register 173 2.10.14 SSTS—Secondary Status Register 174 2.10.15 MBASE—Memory Base Address Register 175 2.10.16 MLIMIT—Memory Limit Address Register 177 2.10.17 PMBASEU—Prefetchable Memory Base Address Register 178 2.10.18 PMLIMIT—Prefetchable Memory Limit Address Register 178 2.10.19 PMLIMIT—Prefetchable Memory Limit Address Register 178 2.10.20 PMLIMIT—Prefetchable Memory Limit Address Register 180 2.1		2.10.2	DID—Device Identification Register
2.10.4 PCISTS—PCI Status Register 169 2.10.5 RID—Revision Identification Register 170 2.10.6 CC—Class Code Register 171 2.10.7 CL—Cache Line Size Register 171 2.10.8 HDR—Header Type Register 172 2.10.10 SBUSN—Secondary Bus Number Register 172 2.10.11 SUBUSN—Subordinate Bus Number Register 172 2.10.12 IOBASE—I/O Base Address Register 173 2.10.13 SULINT—I/O Limit Address Register 173 2.10.14 SSTS—Secondary Status Register 173 2.10.15 MBASE—Memory Base Address Register 176 2.10.16 MLIMIT—Memory Limit Address Register 176 2.10.17 PMBASE—Prefetchable Memory Base Address Register 177 2.10.18 PMLIMIT—Prefetchable Memory Limit Address Upper Register 179 2.10.20 PMLIMITU—Prefetchable Memory Limit Address Upper Register 180 2.10.21 INTRLINE—Interrupt Line Register 181 2.10.22 INTRLINE—Interrupt Line Register 182 2.10.25 PM_CAPID—Power Management Control/Status Register 182 <t< td=""><td></td><td>2.10.3</td><td>PCICMD—PCI Command Register</td></t<>		2.10.3	PCICMD—PCI Command Register
2.10.5 RID—Revision Identification Register 170 2.10.6 CC—Class Code Register 171 2.10.7 CL—Cache Line Size Register 171 2.10.8 HDR—Header Type Register 171 2.10.9 PBUSN—Primary Bus Number Register 172 2.10.10 SBUSN—Secondary Bus Number Register 172 2.10.11 SUBUSN—Subordinate Bus Number Register 173 2.10.12 IOBASE—I/O Base Address Register 173 2.10.13 IOLIMIT—I/O Limit Address Register 173 2.10.14 SSTS—Secondary Status Register 174 2.10.15 MBASE—Memory Base Address Register 176 2.10.16 MLIMIT—Memory Limit Address Register 177 2.10.17 PMBASE—Prefetchable Memory Limit Address Register 177 2.10.19 PMBASEU—Prefetchable Memory Limit Address Register 178 2.10.20 PMLIMITT—Prefetchable Memory Limit Address Upper Register 180 2.10.21 INTRPIN—Interrupt Pin Register 181 2.10.22 INTRLINE—Interrupt Pin Register 182 2.10.24 BCTRL—Bridge Control Register 182 2.10.25		2.10.4	PCISTS—PCI Status Register
2.10.6 CC—Class Code Register. 171 2.10.7 CL—Cache Line Size Register. 171 2.10.8 HDR—Header Type Register. 171 2.10.9 PBUSN—Primary Bus Number Register 172 2.10.10 SBUSN—Secondary Bus Number Register 172 2.10.11 SUBUSN—Subordinate Bus Number Register 172 2.10.12 IOBASE—I/O Base Address Register 173 2.10.13 IOLIMIT—I/O Limit Address Register 173 2.10.14 SSTS—Secondary Status Register 174 2.10.15 MBASE—Memory Base Address Register 176 2.10.16 MLIMIT—Memory Limit Address Register 176 2.10.17 PMBASE—Prefetchable Memory Base Address Register 177 2.10.18 PMLIMIT—Prefetchable Memory Limit Address Register 178 2.10.20 PMLIMIT—Prefetchable Memory Limit Address Upper Register 180 2.10.21 INTRPIN—Interrupt Pin Register 181 2.10.22 INTRINE—Interrupt Pin Register 182 2.10.23 INTRPIN—Interrupt Pin Register 182 2.10.24 BCTRL—Bridge Control Register 182 2.10.25		2.10.5	RID—Revision Identification Register
2.10.7 CL—Cache Line Size Register 171 2.10.8 HDR—Header Type Register 171 2.10.9 PBUSN—Primary Bus Number Register 172 2.10.10 SBUSN—Secondary Bus Number Register 172 2.10.11 SUBUSN—Subordinate Bus Number Register 172 2.10.12 IOBASE—I/O Base Address Register 173 2.10.13 IOLIMIT—I/O Limit Address Register 173 2.10.14 SSTS—Secondary Status Register 173 2.10.15 MBASE—Memory Base Address Register 174 2.10.16 MLIMIT—Memory Limit Address Register 177 2.10.17 PMBASE—Prefetchable Memory Base Address Register 177 2.10.17 PMBASEU—Prefetchable Memory Limit Address Register 178 2.10.19 PMLMIT—Prefetchable Memory Base Address Register 179 2.10.20 PMLIMIT—Prefetchable Memory Limit Address Upper Register 180 2.10.21 INTRLINE—Interrupt Line Register 181 2.10.22 INTRLINE—Interrupt Pin Register 182 2.10.24 BCTRL—Bridge Control Register 182 2.10.25 PM_CAPID—Power Management Control/Status Register 182<		2.10.6	CC—Class Code Register
210.8 HDR—Header Type Register 171 210.9 PBUSN—Primary Bus Number Register 172 210.10 SBUSN—Secondary Bus Number Register 172 210.11 SUBUSN—Subordinate Bus Number Register 172 210.12 IOBASE—I/O Base Address Register 173 210.13 IOLIMIT—I/O Limit Address Register 173 210.14 SSTS—Secondary Status Register 173 210.15 MBASE—Memory Base Address Register 176 210.16 MLIMIT—Memory Limit Address Register 176 210.17 PMBASE—Prefetchable Memory Base Address Register 177 210.18 PMLIMIT—Prefetchable Memory Limit Address Register 178 210.19 PMBASEU—Prefetchable Memory Limit Address Upper Register 179 210.20 PMLIMITU—Prefetchable Memory Limit Address Upper Register 180 210.21 INTRLINE—Interrupt Line Register 181 210.22 INTRLINE—Interrupt In Register 182 210.24 BCTRL—Bridge Control Register 182 210.25 PM_CAPID—Ower Management Capabilities Register 182 210.26 PM_CSID—Subsystem ID and Vendor ID Capabilities Register <td></td> <td>2.10.7</td> <td>CI – Cache Line Size Register</td>		2.10.7	CI – Cache Line Size Register
2.10.9 PBUSN—Primary Bus Number Register 172 2.10.10 SBUSN—Secondary Bus Number Register 172 2.10.11 SUBUSN—Subordinate Bus Number Register 172 2.10.12 IOBASE—1/O Base Address Register 173 2.10.13 IOLIMIT—I/O Limit Address Register 173 2.10.14 SSTS—Secondary Status Register 174 2.10.15 MBASE—Memory Base Address Register 175 2.10.16 MLIMIT—Memory Limit Address Register 176 2.10.17 PMBASE—Prefetchable Memory Base Address Register 177 2.10.18 PMLIMIT—Prefetchable Memory Limit Address Register 179 2.10.20 PMLIMIT—Prefetchable Memory Limit Address Upper Register 180 2.10.21 CAPPTR—Capabilities Pointer Register 181 2.10.22 INTRPIN—Interrupt Line Register 182 2.10.24 BCTRL—Bridge Control Register 182 2.10.25 PM_CAPID—Power Management Capabilities Register 182 2.10.26 PM_CAPID—Power Management Capabilities Register 187 2.10.27 SS_CAPID—Subsystem ID and Subsystem Vendor ID Register 187 2.10.28 SS—Subsystem I		2.10.8	HDR—Header Type Register
2.10.10 SBUSN—Secondary Bus Number Register 172 2.10.11 SUBUSN—Subordinate Bus Number Register 172 2.10.12 IOBASE—I/O Base Address Register 173 2.10.13 IOLIMIT—I/O Limit Address Register 173 2.10.14 SSTS—Secondary Status Register 174 2.10.15 MBASE—Memory Base Address Register 175 2.10.16 MLIMIT—Memory Limit Address Register 177 2.10.17 PMBASE—Prefetchable Memory Base Address Register 177 2.10.18 PMLIMIT—Prefetchable Memory Limit Address Register 178 2.10.19 PMBASEU—Prefetchable Memory Limit Address Upper Register 179 2.10.20 PMLIMITU—Prefetchable Memory Limit Address Upper Register 181 2.10.21 CAPPTR—Capabilities Pointer Register 181 2.10.22 INTRLINE—Interrupt Line Register 182 2.10.24 BCTRL—Bridge Control Register 182 2.10.25 PM_CAPID—Power Management Capabilities Register 184 2.10.26 PM_CS—Power Management Control/Status Register 185 2.10.27 SS_CAPID—Subsystem ID and Vendor ID Capabilities Register 187 2.10.28 </td <td></td> <td>2.10.9</td> <td>PBUSN—Primary Bus Number Register</td>		2.10.9	PBUSN—Primary Bus Number Register
2.10.11SUBUSN—Subordinate Bus Number Register1722.10.12IOBASE—I/O Base Address Register1732.10.13IOLIMIT—I/O Limit Address Register1732.10.14SSTS—Secondary Status Register1742.10.15MBASE—Memory Base Address Register1752.10.16MLIMIT—Memory Limit Address Register1762.10.17PMBASE—Prefetchable Memory Base Address Register1772.10.18PMLIMIT—Prefetchable Memory Base Address Register1782.10.19PMBASEU—Prefetchable Memory Limit Address Upper Register1792.10.20PMLIMIT—Prefetchable Memory Limit Address Upper Register1802.10.21CAPPTR—Capabilities Pointer Register1812.10.22INTRLINE—Interrupt Line Register1822.10.24BCTRL—Bridge Control Register1822.10.25PM_CAPID—Power Management Capabilities Register1842.10.26PM_CS—Power Management Control/Status Register1872.10.27SS_CAPID—Subsystem ID and Vendor ID Capabilities Register1872.10.30MC—Message Control Register1882.10.31MA—Message Address Register1882.10.33MD—Message Control Register1902.10.34PEG_CAPID—CI Express-G Capability List Register1912.10.35DCAP—PCI Express-G Capability List Register1912.10.36DCTL—Device Control Register1912.10.37DSTS—Device Status Register1912.10.38LCAP—Link Capabilities Register1932.10.39 </td <td></td> <td>2.10.10</td> <td>SBUSN—Secondary Bus Number Register</td>		2.10.10	SBUSN—Secondary Bus Number Register
2.10.12 IOBASE—I/O Base Address Register 173 2.10.13 IOLIMIT—I/O Limit Address Register 173 2.10.14 SSTS—Secondary Status Register 174 2.10.15 MBASE—Memory Base Address Register 175 2.10.16 MLIMIT—Memory Limit Address Register 176 2.10.17 PMBASE—Prefetchable Memory Base Address Register 177 2.10.18 PMLIMIT—Prefetchable Memory Base Address Register 178 2.10.19 PMBASEU—Prefetchable Memory Base Address Register 178 2.10.19 PMBASEU—Prefetchable Memory Base Address Register 179 2.10.20 PMLIMITU—Prefetchable Memory Base Address Upper Register 180 2.10.21 CAPPTR—Capabilities Pointer Register 181 2.10.22 INTRLINE—Interrupt Line Register 182 2.10.24 BCTRL—Bridge Control Register 182 2.10.25 PM_CAPID—Power Management Capabilities Register 182 2.10.26 PM_CS—Power Management Control/Status Register 187 2.10.27 SS_CAPID—Subsystem ID and Subsystem Vendor ID Capabilities Register 187 2.10.29 MSI_CAPID—Message Signaled Interrupts Capability ID Register 188		2.10.11	SUBUSN—Subordinate Bus Number Register
2.10.13IOLIMIT—I/O Limit Address Register1732.10.14SSTS—Secondary Status Register1742.10.15MBASE—Memory Base Address Register1752.10.16MLIMIT—Memory Limit Address Register1762.10.17PMBASE—Prefetchable Memory Base Address Register1772.10.18PMLIMIT—Prefetchable Memory Limit Address Register1782.10.19PMBASEU—Prefetchable Memory Limit Address Upper Register1792.10.20PMLIMITU—Prefetchable Memory Limit Address Upper Register1802.10.21CAPPTR—Capabilities Pointer Register1812.10.22INTRLINE—Interrupt Line Register1812.10.23INTRPIN—Interrupt Pin Register1822.10.24BCTRL—Bridge Control Register1822.10.25PM_CAPID—Power Management Capabilities Register1842.10.26PM_CS—Power Management Control/Status Register1872.10.28SS—Subsystem ID and Subsystem Vendor ID Capabilities Register1872.10.29MSI_CAPID—Message Signaled Interrupts Capability ID Register1882.10.30MC—Message Control Register1882.10.31MA—Message Data Register1902.10.33PEG_CAP—PCI Express-G Capability List Register1912.10.34DCAP—Device Capabilities Register1912.10.35DCAP—Device Control Register1912.10.36DCTL—Device Control Register1932.10.37DSTS—Device Status Register1932.10.38LCAP—Link Control Register1942		2.10.12	IOBASE—I/O Base Address Register
2.10.14SSTS—Secondary Status Register1742.10.15MBASE—Memory Base Address Register1752.10.16MLIMIT—Memory Limit Address Register1762.10.17PMBASE—Prefetchable Memory Base Address Register1772.10.18PMLIMIT—Prefetchable Memory Base Address Register1782.10.19PMBASEU—Prefetchable Memory Limit Address Register1792.10.20PMLIMITU—Prefetchable Memory Limit Address Upper Register1802.10.21CAPPTR—Capabilities Pointer Register1812.10.22INTRLINE—Interrupt Line Register1822.10.23INTRPIN—Interrupt Pin Register1822.10.24BCTRL—Bridge Control Register1822.10.25PM_CAPID—Power Management Capabilities Register1842.10.26PM_CS—Power Management Control/Status Register1852.10.27SS_CAPID—Subsystem ID and Vendor ID Capabilities Register1872.10.29MSI_CAPID—Message Signaled Interrupts Capability ID Register1882.10.30MC—Message Control Register1882.10.31MA—Message Address Register1902.10.33PEG_CAPI—PCI Express-G Capability List Register1902.10.34PEG_CAP—PCI Express-G Capabilities Register1912.10.35DCAP—PCI Express-G Capability List Register1912.10.36DCTL—Device Control Register1912.10.37DSTS—Device Status Register1932.10.38LCAP—Link Control Register1942.10.39LCTL—Link Control Register194 <td></td> <td>2.10.13</td> <td>IOLIMIT—I/O Limit Address Register</td>		2.10.13	IOLIMIT—I/O Limit Address Register
2.10.15MBASE—Memory Base Address Register1752.10.16MLIMIT—Memory Limit Address Register1762.10.17PMBASE—Prefetchable Memory Base Address Register1772.10.18PMLIMIT—Prefetchable Memory Limit Address Register1782.10.19PMBASEU—Prefetchable Memory Base Address Upper Register1792.10.20PMLIMITU—Prefetchable Memory Base Address Upper Register1802.10.21CAPPTR—Capabilities Pointer Register1812.10.22INTRLINE—Interrupt Line Register1812.10.23INTRPIN—Interrupt Pin Register1822.10.24BCTRL—Bridge Control Register1822.10.25PM_CAPID—Power Management Capabilities Register1852.10.26PM_CS—Power Management Control/Status Register1872.10.27SS_CAPID—Subsystem ID and Vendor ID Capabilities Register1872.10.29MSI_CAPID—Message Signaled Interrupts Capability ID Register1882.10.31MA—Message Address Register1882.10.32MD—Message Data Register1902.10.33PEG_CAPL—PCI Express-G Capability List Register1902.10.34PEG_CAPL—PCI Express-G Capabilities Register1912.10.35DCAP—Device Control Register1912.10.36DCTL—Device Control Register1922.10.37DSTS—Device Status Register1932.10.38LCAP—Link Capabilities Register1942.10.39LCTL—Link Control Register196		2.10.14	SSTS—Secondary Status Register
2.10.16MLIMIT—Memory Limit Address Register1762.10.17PMBASE—Prefetchable Memory Base Address Register1772.10.18PMLIMIT—Prefetchable Memory Limit Address Register1782.10.19PMBASEU—Prefetchable Memory Base Address Upper Register1792.10.20PMLIMITU—Prefetchable Memory Limit Address Upper Register1802.10.21CAPPTR—Capabilities Pointer Register1812.10.22INTRLINE—Interrupt Line Register1812.10.23INTRPIN—Interrupt Pin Register1822.10.24BCTRL—Bridge Control Register1822.10.25PM_CAPID—Power Management Capabilities Register1822.10.26PM_CS—Power Management Control/Status Register1872.10.27SS_CAPID—Subsystem ID and Vendor ID Capabilities Register1872.10.29MSI_CAPID—Message Signaled Interrupts Capability ID Register1882.10.30MC—Message Control Register1892.10.31MA—Message Address Register1902.10.32MD—Message Data Register1902.10.33PEG_CAPL—PCI Express-G Capability List Register1912.10.35DCAP—Device Capabilities Register1912.10.36DCTL—Device Capabilities Register1932.10.37DSTS—Device Status Register1932.10.38LCAP—Link Capabilities Register1942.10.39LCTL—Link Control Register194		2.10.15	MBASE—Memory Base Address Register
2.10.17PMBASE—Prefetchable Memory Base Address Register1772.10.18PMLIMIT—Prefetchable Memory Limit Address Register1782.10.19PMBASEU—Prefetchable Memory Base Address Upper Register1792.10.20PMLIMITU—Prefetchable Memory Limit Address Upper Register1802.10.21CAPPTR—Capabilities Pointer Register1812.10.22INTRLINE—Interrupt Line Register1812.10.23INTRPIN—Interrupt Pin Register1822.10.24BCTRL—Bridge Control Register1822.10.25PM_CAPID—Power Management Capabilities Register1842.10.26PM_CS—Power Management Control/Status Register1852.10.27SS_CAPID—Subsystem ID and Vendor ID Capabilities Register1872.10.28SS—Subsystem ID and Subsystem Vendor ID Register1882.10.30MC—Message Control Register1882.10.31MA—Message Address Register1902.10.32MD—Message Data Register1902.10.33PEG_CAPI—PCI Express-G Capability List Register1912.10.35DCAP—Device Capabilities Register1912.10.35DCAP—Device Control Register1932.10.36LCAP—Link Capabilities Register1932.10.38LCAP—Link Capabilities Register1942.10.39LCTL—Link Control Register194		2.10.16	MLIMIT—Memory Limit Address Register
2.10.18PMLIMIT—Prefetchable Memory Limit Address Register1782.10.19PMBASEU—Prefetchable Memory Base Address Upper Register1792.10.20PMLIMITU—Prefetchable Memory Limit Address Upper Register1802.10.21CAPPTR—Capabilities Pointer Register1812.10.22INTRLINE—Interrupt Line Register1812.10.23INTRPIN—Interrupt Pin Register1822.10.24BCTRL—Bridge Control Register1822.10.25PM_CAPID—Power Management Capabilities Register1852.10.26PM_CS—Power Management Control/Status Register1872.10.27SS_CAPID—Subsystem ID and Vendor ID Capabilities Register1872.10.29MSI_CAPID—Message Signaled Interrupts Capability ID Register1882.10.30MC—Message Control Register1882.10.31MA—Message Address Register1902.10.33PEG_CAPL—PCI Express-G Capability List Register1912.10.34PEG_CAP—PCI Express-G Capabilities Register1912.10.35DCAP—Device Control Register1932.10.36DCTL—Device Control Register1932.10.37DSTS—Device Status Register1932.10.38LCAP—Link Capabilities Register1942.10.39LCTL—Link Control Register1942.10.39LCTL—Link Control Register194		2.10.17	PMBASE—Prefetchable Memory Base Address Register
2.10.19PMBASEU—Prefetchable Memory Base Address Upper Register1792.10.20PMLIMITU—Prefetchable Memory Limit Address Upper Register1802.10.21CAPPTR—Capabilities Pointer Register1812.10.22INTRLINE—Interrupt Line Register1812.10.23INTRPIN—Interrupt Pin Register1822.10.24BCTRL—Bridge Control Register1822.10.25PM_CAPID—Power Management Capabilities Register1842.10.26PM_CS—Power Management Control/Status Register1852.10.27SS_CAPID—Subsystem ID and Vendor ID Capabilities Register1872.10.28SS—Subsystem ID and Subsystem Vendor ID Register1872.10.29MSI_CAPID—Message Signaled Interrupts Capability ID Register1882.10.30MC—Message Control Register1892.10.31MA—Message Address Register1902.10.32MD—Message Data Register1902.10.33PEG_CAPL—PCI Express-G Capability List Register1912.10.34PEG_CAP—PCI Express-G Capabilities Register1912.10.35DCAP—Device Control Register1932.10.37DSTS—Device Status Register1932.10.38LCAP—Link Capabilities Register1942.10.39LCTL—Link Control Register1942.10.39LCTL—Link Control Register194		2.10.18	PMI IMIT—Prefetchable Memory Limit Address Register
2.10.20PMLIMITU—Prefetchable Memory Limit Address Upper Register1802.10.21CAPPTR—Capabilities Pointer Register1812.10.22INTRLINE—Interrupt Line Register1812.10.23INTRPIN—Interrupt Pin Register1822.10.24BCTRL—Bridge Control Register1822.10.25PM_CAPID—Power Management Capabilities Register1842.10.26PM_CS—Power Management Control/Status Register1852.10.27SS_CAPID—Subsystem ID and Vendor ID Capabilities Register1872.10.28SS—Subsystem ID and Subsystem Vendor ID Register1872.10.29MSI_CAPID—Message Signaled Interrupts Capability ID Register1882.10.30MC—Message Control Register1892.10.31MA—Message Address Register1902.10.33PEG_CAPL—PCI Express-G Capability List Register1912.10.34PEG_CAP—PCI Express-G Capability List Register1912.10.35DCAP—Device Control Register1922.10.37DSTS—Device Status Register1932.10.38LCAP—Link Control Register1942.10.39LCTL—Link Control Register194		2.10.19	PMBASEU—Prefetchable Memory Base Address Upper Register
2.10.21CAPTR—Capabilities Pointer Register1812.10.22INTRLINE—Interrupt Line Register1812.10.23INTRPIN—Interrupt Pin Register1822.10.24BCTRL—Bridge Control Register1822.10.25PM_CAPID—Power Management Capabilities Register1842.10.26PM_CS—Power Management Control/Status Register1852.10.27SS_CAPID—Subsystem ID and Vendor ID Capabilities Register1872.10.28SS—Subsystem ID and Subsystem Vendor ID Register1872.10.29MSI_CAPID—Message Signaled Interrupts Capability ID Register1882.10.30MC—Message Control Register1892.10.31MA—Message Address Register1902.10.32PEG_CAPL—PCI Express-G Capability List Register1912.10.34PEG_CAPP—PCI Express-G Capabilities Register1912.10.35DCAP—Device Capabilities Register1912.10.36DCTL—Device Control Register1932.10.38LCAP—Link Capabilities Register1932.10.39LCTL—Link Control Register1942.10.39LCTL—Link Control Register196		2 10 20	PMI IMITU – Prefetchable Memory Limit Address Upper Register 180
2.10.22INTRLINE—Interrupt Line Register1812.10.23INTRPIN—Interrupt Pin Register1822.10.24BCTRL—Bridge Control Register1822.10.25PM_CAPID—Power Management Capabilities Register1842.10.26PM_CS—Power Management Control/Status Register1852.10.27SS_CAPID—Subsystem ID and Vendor ID Capabilities Register1872.10.28SS—Subsystem ID and Subsystem Vendor ID Register1872.10.29MSI_CAPID—Message Signaled Interrupts Capability ID Register1882.10.30MC—Message Control Register1882.10.31MA—Message Address Register1902.10.32PEG_CAPL—PCI Express-G Capability List Register1902.10.33PEG_CAP—PCI Express-G Capabilities Register1912.10.35DCAP—Device Control Register1912.10.36DCTL—Device Control Register1932.10.37DSTS—Device Status Register1932.10.38LCAP—Link Capabilities Register1942.10.39LCTL—Link Control Register196		2.10.21	CAPPTR—Capabilities Pointer Register
2.10.23INTRPIN—Interrupt Pin Register1822.10.24BCTRL—Bridge Control Register1822.10.25PM_CAPID—Power Management Capabilities Register1842.10.26PM_CS—Power Management Control/Status Register1852.10.27SS_CAPID—Subsystem ID and Vendor ID Capabilities Register1872.10.28SS—Subsystem ID and Subsystem Vendor ID Register1872.10.29MSI_CAPID—Message Signaled Interrupts Capability ID Register1882.10.30MC—Message Control Register1882.10.31MA—Message Address Register1902.10.32MD—Message Data Register1902.10.33PEG_CAPL—PCI Express-G Capability List Register1912.10.35DCAP—Device Capabilities Register1912.10.36DCTL—Device Control Register1932.10.37DSTS—Device Status Register1932.10.38LCAP—Link Capabilities Register1942.10.39LCTL—Link Control Register196		2.10.22	INTRUINE-Interrupt Line Register
2.10.24BCTRL—Bridge Control Register1822.10.25PM_CAPID—Power Management Capabilities Register1842.10.26PM_CS—Power Management Control/Status Register1852.10.27SS_CAPID—Subsystem ID and Vendor ID Capabilities Register1872.10.28SS—Subsystem ID and Subsystem Vendor ID Register1872.10.29MSI_CAPID—Message Signaled Interrupts Capability ID Register1882.10.30MC—Message Control Register1882.10.31MA—Message Address Register1902.10.32MD—Message Data Register1902.10.33PEG_CAPL—PCI Express-G Capability List Register1912.10.34PEG_CAP—PCI Express-G Capabilities Register1912.10.35DCAP—Device Capabilities Register1912.10.36DCTL—Device Control Register1932.10.37DSTS—Device Status Register1932.10.38LCAP—Link Control Register1942.10.39LCTL—Link Control Register196		2.10.23	INTRPIN—Interrupt Pin Register 182
2.10.25PM_CAPID—Power Management Capabilities Register1842.10.26PM_CS—Power Management Control/Status Register1852.10.27SS_CAPID—Subsystem ID and Vendor ID Capabilities Register1872.10.28SS—Subsystem ID and Subsystem Vendor ID Register1872.10.29MSI_CAPID—Message Signaled Interrupts Capability ID Register1882.10.30MC—Message Control Register1882.10.31MA—Message Address Register1902.10.32MD—Message Data Register1902.10.33PEG_CAPL—PCI Express-G Capability List Register1912.10.34PEG_CAP—PCI Express-G Capabilities Register1912.10.35DCAP—Device Capabilities Register1922.10.36DCTL—Device Control Register1932.10.37DSTS—Device Status Register1932.10.39LCAP—Link Capabilities Register1942.10.39LCTL—Link Control Register194		2.10.24	BCTRI — Bridge Control Register
2.10.26PM_CS-Power Management Control/Status Register1852.10.27SS_CAPID-Subsystem ID and Vendor ID Capabilities Register1872.10.28SS-Subsystem ID and Subsystem Vendor ID Register1872.10.29MSI_CAPID-Message Signaled Interrupts Capability ID Register1882.10.30MC-Message Control Register1882.10.31MA-Message Address Register1892.10.32MD-Message Data Register1902.10.33PEG_CAPL-PCI Express-G Capability List Register1912.10.34PEG_CAP-PCI Express-G Capabilities Register1912.10.35DCAP-Device Capabilities Register1912.10.36DCTL-Device Control Register1932.10.37DSTS-Device Status Register1932.10.38LCAP-Link Capabilities Register1942.10.39LCTL-Link Control Register196		2.10.25	PM CAPID—Power Management Capabilities Register
2.10.27SS_CAPID—Subsystem ID and Vendor ID Capabilities Register1872.10.28SS—Subsystem ID and Subsystem Vendor ID Register1872.10.29MSI_CAPID—Message Signaled Interrupts Capability ID Register1882.10.30MC—Message Control Register1882.10.31MA—Message Address Register1892.10.32MD—Message Data Register1902.10.33PEG_CAPL—PCI Express-G Capability List Register1912.10.34PEG_CAP—PCI Express-G Capabilities Register1912.10.35DCAP—Device Capabilities Register1912.10.36DCTL—Device Control Register1932.10.37DSTS—Device Status Register1932.10.38LCAP—Link Capabilities Register1942.10.39LCTL—Link Control Register196		2.10.26	PM_CS—Power Management Control/Status Register
2.10.28SS—Subsystem ID and Subsystem Vendor ID Register1872.10.29MSI_CAPID—Message Signaled Interrupts Capability ID Register1882.10.30MC—Message Control Register1882.10.31MA—Message Address Register1892.10.32MD—Message Data Register1902.10.33PEG_CAPL—PCI Express-G Capability List Register1902.10.34PEG_CAP—PCI Express-G Capabilities Register1912.10.35DCAP—Device Capabilities Register1912.10.36DCTL—Device Control Register1932.10.37DSTS—Device Status Register1932.10.38LCAP—Link Capabilities Register1942.10.39LCTL—Link Control Register196		2.10.27	SS_CAPID—Subsystem ID and Vendor ID Capabilities Register
2.10.29MSI_CAPID—Message Signaled Interrupts Capability ID Register1882.10.30MC—Message Control Register1882.10.31MA—Message Address Register1892.10.32MD—Message Data Register1902.10.33PEG_CAPL—PCI Express-G Capability List Register1902.10.34PEG_CAP—PCI Express-G Capabilities Register1912.10.35DCAP—Device Capabilities Register1912.10.36DCTL—Device Control Register1922.10.37DSTS—Device Status Register1932.10.38LCAP—Link Capabilities Register1942.10.39LCTL—Link Control Register196		2.10.28	SS—Subsystem ID and Subsystem Vendor ID Register
2.10.30MC—Message Control Register1882.10.31MA—Message Address Register1892.10.32MD—Message Data Register1902.10.33PEG_CAPL—PCI Express-G Capability List Register1902.10.34PEG_CAP—PCI Express-G Capabilities Register1912.10.35DCAP—Device Capabilities Register1912.10.36DCTL—Device Control Register1922.10.37DSTS—Device Status Register1932.10.38LCAP—Link Capabilities Register1942.10.39LCTL—Link Control Register196		2.10.29	MSI CAPID—Message Signaled Interrupts Capability ID Register
2.10.31MA-Message Address Register1892.10.32MD-Message Data Register1902.10.33PEG_CAPL-PCI Express-G Capability List Register1902.10.34PEG_CAP-PCI Express-G Capabilities Register1912.10.35DCAP-Device Capabilities Register1912.10.36DCTL-Device Control Register1922.10.37DSTS-Device Status Register1932.10.38LCAP-Link Capabilities Register1942.10.39LCTL-Link Control Register196		2.10.30	MC—Message Control Register.
2.10.32MD—Message Data Register1902.10.33PEG_CAPL—PCI Express-G Capability List Register1902.10.34PEG_CAP—PCI Express-G Capabilities Register1912.10.35DCAP—Device Capabilities Register1912.10.36DCTL—Device Control Register1922.10.37DSTS—Device Status Register1932.10.38LCAP—Link Capabilities Register1942.10.39LCTL—Link Control Register196		2.10.31	MA—Message Address Register
2.10.33PEG_CAPL—PCI Express-G Capability List Register1902.10.34PEG_CAP—PCI Express-G Capabilities Register1912.10.35DCAP—Device Capabilities Register1912.10.36DCTL—Device Control Register1922.10.37DSTS—Device Status Register1932.10.38LCAP—Link Capabilities Register1942.10.39LCTL—Link Control Register196		2.10.32	MD—Message Data Register
2.10.34PEG_CAP—PCI Express-G Capabilities Register1912.10.35DCAP—Device Capabilities Register1912.10.36DCTL—Device Control Register1922.10.37DSTS—Device Status Register1932.10.38LCAP—Link Capabilities Register1942.10.39LCTL—Link Control Register196		2.10.33	PEG CAPL—PCI Express-G Capability List Register
2.10.35DCAP—Device Capabilities Register1912.10.36DCTL—Device Control Register1922.10.37DSTS—Device Status Register1932.10.38LCAP—Link Capabilities Register1942.10.39LCTL—Link Control Register196		2.10.34	PEG CAP—PCI Express-G Capabilities Register
2.10.36DCTL—Device Control Register1922.10.37DSTS—Device Status Register1932.10.38LCAP—Link Capabilities Register1942.10.39LCTL—Link Control Register196		2.10.35	DCAP—Device Capabilities Register
2.10.37DSTS—Device Status Register1932.10.38LCAP—Link Capabilities Register1942.10.39LCTL—Link Control Register196		2.10.36	DCTL—Device Control Register
2.10.38LCAP—Link Capabilities Register1942.10.39LCTL—Link Control Register196		2.10.37	DSTS—Device Status Register
2.10.39 LCTL—Link Control Register		2.10.38	LCAP—Link Capabilities Register
		2.10.39	LCTL—Link Control Register

	2.10.40	LSTS—Link Status Register	198
	2.10.41	SLOTCAP—Slot Capabilities Register	199
	2.10.42	SLOTCTL—Slot Control Register	201
	2.10.43	SLOTSTS—Slot Status Register	203
	2.10.44	RCTL-Root Control Register	205
	2.10.45	LCAP2—Link Capabilities 2 Register	205
2.11	PCI Devic	e 6 Extended Configuration Registers	206
	2.11.1	PVCCAP1—Port VC Capability Register 1	207
	2.11.2	PVCCAP2—Port VC Capability Register 2	207
	2.11.3	PVCCTL—Port VC Control Register	208
	2.11.4	VC0RCAP—VC0 Resource Capability Register	208
	2.11.5	VC0RCTL-VC0 Resource Control Register	210
	2.11.6	VCORSTS—VCO Resource Status Register	211
	2.11.7	RCLDECH—Root Complex Link Declaration Enhanced	211
	2.11.8	ESD-Element Self Description Register	212
	2.11.9	LE1D—Link Entry 1 Description Register	213
	2.11.10	LE1A—Link Entry 1 Address Register	213
	2.11.11	LE1AH—Link Entry 1 Address Register	214
	2.11.12	APICBASE—APIC Base Address Register	214
	2.11.13	APICLIMIT—APIC Base Address Limit Register	215
	2.11.14	CMNRXERR—Common Rx Error Register	215
	2.11.15	PEGTST—PCI Express* Test Modes Register	216
	2.11.16	PEGUPDNCEG—PEG UPconfia/DNconfia Control Register	216
	2.11.17	BGECTI 3—BGE Control 3 Register	217
	2.11.18	FOPRESET1 2—Equalization Preset 1/2 Register	218
	2.11.19	FOPRESET2 3 4—Equalization Preset 2/3/4 Register	218
	2.11.20	FOPRESET6 7—Foundization Preset 6/7 Register	219
	2.11.21	FOCEG—Foualization Configuration Register	219
2.12	Direct Me	dia Interface Base Address Registers (DMIBAR)	220
	2.12.1	DMIVCECH—DMI Virtual Channel Enhanced Canability Register	221
	2.12.2	DMIPVCCAP1—DMI Port VC Canability Register 1	222
	2.12.3	DMIPVCCAP2—DMI Port VC Canability Register 2	222
	2.12.4	DMIPVCCTI – DMI Port VC Control Register	223
	2.12.5	DMIVCORCAP—DMI VCO Resource Canability Register	223
	2 12 6	DMIVCORCTI – DMI VCO Resource Control Register	224
	2 12 7	DMIVCORSTS—DMI VCO Resource Status Register	225
	2 1 2 8	DMIVC1RCAP-DMI VC1 Resource Canability Register	225
	212.0	DMIVC1RCTI – DMI VC1 Resource Control Register	226
	2.12.5	DMIVCIRSTS-DMI VCI Resource Status Register	220
	2.12.10	DMIVCPRCAP-DMI VCI Resource Canability Register	227
	2 12 12	DMIVCPRCTI – DMI VCp Resource Control Register	227
	2.12.12	DMIVCPRSTS_DMI VCp Resource Status Register	220
	2.12.15	DMIVCH ROTO DMI VCp Resource Canability Register	220
	2 12 15	DMIVCMRCTI – DMI VCm Resource Captolicy Register	220
	2.12.15	DMIVCMRCTE DMI VCm Resource Status Register	230
	2.12.10	DMIRCI DECH-DMI Root Complex Link Declaration Register	231
	2.12.17	DMIRCEDECH-DMI Root Complex Link Decialation Register	222
	2.12.10	DMILED DMI Link Entry 1 Description Register	222
	2.12.19	DMILETO DIALEMK ENTRY I Address Pagister	222
	2.12.20	DMILLETA DMI Link Liney I Address Degister	224
	2.12.21 2 12 22	DMILED DMI Link Opper Link y 1 Address Register	234
	2,12,22	DMILE2D-DMI LINK LINY 2 DESCRIPTION REGISTER	232
	2,12,23	ICAD_1 ink Canabilities Dedictor	230
	∠.⊥∠.∠4 2 12 2⊑	LCAR - LITIK Capavilles Register	ענ∠ רכר
	2.12.23	ISTS_DMI Link Status Dedictor	23/
	2.12.20	LOTO LINK Status Register	200
	2.12.2/	LET LZ LITIK CUTILI UT Z REGISTER	209

	2.12.28	LSTS2—Link Status 2 Register241
2.13	MCHBAR	Registers in Memory Controller—Channel 0 Registers
	2.13.1	TC_DBP_C0—Timing of DDR – Bin Parameters Register
	2.13.2	TC_RAP_CO—Timing of DDR – Regular Access Parameters Register
	2.13.3	SC_IO_LATENCY_CO—IO Latency configuration Register
	2.13.4	TC_SRFTP_C0-Self Refresh Timing Parameters Register
	2.13.5	PM_PDWN_config_C0-Power-down Configuration Register
	2.13.6	ECCERRLOGO CO-ECC Error Log 0 Register
	2.13.7	ECCERRLOG1 C0—ECC Error Log 1 Register
	2.13.8	TC_RFP_C0—Refresh Parameters Register
	2.13.9	TC_RFTP_CO—Refresh Timing Parameters Register
2.14	MCHBAR	Registers in Memory Controller – Channel 1
	2.14.1	TC_DBP_C1—Timing of DDR – Bin Parameters Register
	2.14.2	TC_RAP_C1—Timing of DDR – Regular Access Parameters Register
	2.14.3	SC_IO_LATENCY_C1—IO Latency configuration Register
	2.14.4	PM_PDWN_config_C1—Power-down Configuration Register
	2.14.5	ECCERRLOG0_C1—ECC Error Log 0 Register
	2.14.6	ECCERRLOG1 C1—ECC Error Log 1 Register
	2.14.7	TC_RFP_C1—Refresh Parameters Register
	2.14.8	TC RFTP C1—Refresh Timing Parameters Register
	2.14.9	TC_SRFTP_C1—Self refresh Timing Parameters Register
2.15	MCHBAR	Registers in Memory Controller –
	Integrate	ed Memory Peripheral Hub (IMPH)257
	2.15.1	CRDTCTL3—Credit Control 3 Register257
	2.15.2	CRDTCTL4—Credit Control 4 Register258
2.16	MCHBAR	Registers in Memory Controller – Common
	2.16.1	MAD_CHNL—Address Decoder Channel Configuration Register
	2.16.2	MAD_DIMM_ch0—Address Decode Channel 0 Register
	2.16.3	MAD_DIMM_ch1—Address Decode Channel 1 Register
	2.16.4	PM_SREF_config—Self Refresh Configuration Register
2.17	Memory	Controller MMIO Registers Broadcast Group Registers
	2.17.1	PM_PDWN_config—Power-down Configuration Register
	2.17.2	ECCERRLOG0—ECC Error Log 0 Register
	2.17.3	ECCERRLOG1—ECC Error Log 1 Register265
	2.17.4	PM_CMD_PWR—Power Management Command Power Register
	2.17.5	PM_BW_LIMIT_CONFIG—BW Limit Configuration Register
2.18	Integrate	ed Graphics VTd Remapping Engine Registers
	2.18.1	VER_REG—Version Register
	2.18.2	CAP_REG—Capability Register
	2.18.3	ECAP_REG—Extended Capability Register
	2.18.4	GCMD_REG—Global Command Register
	2.18.5	GSTS_REG—Global Status Register
	2.18.6	RTADDR_REG—Root-Entry Table Address Register
	2.18.7	CCMD_REG—Context Command Register
	2.18.8	FSTS_REG—Fault Status Register
	2.18.9	FECTL_REG—Fault Event Control Register
	2.18.10	FEDATA_REG—Fault Event Data Register
	2.18.11	FEADDR_REG—Fault Event Address Register
	2.18.12	FEUADDR_REG—Fault Event Upper Address Register
	2.18.13	AFLOG_REG—Advanced Fault Log Register
	2.18.14	PMEN_REG—Protected Memory Enable Register
	2.18.15	PLMBASE_REG—Protected Low-Memory Base Register
	2.18.16	PLMLIMIT_REG—Protected Low-Memory Limit Register
	2.18.17	PHMBASE_REG—Protected High-Memory Base Register
	2.18.18	PHMLIMIT_REG—Protected High-Memory Limit Register
	2.18.19	IQH_REG—Invalidation Queue Head Register

	2.18.20	IQT_REG—Invalidation Queue Tail Register	292
	2.18.21	IQA_REG—Invalidation Queue Address Register	293
	2.18.22	ICS_REG—Invalidation Completion Status Register	293
	2.18.23	IECTL_REG—Invalidation Event Control Register	294
	2.18.24	IEDATA_REG—Invalidation Event Data Register	295
	2.18.25	IEADDR_REG—Invalidation Event Address Register	295
	2.18.26	IEUADDR REG—Invalidation Event Upper Address Register	296
	2.18.27	IRTA REG—Interrupt Remapping Table Address Register	296
	2.18.28	IVA REG—Invalidate Address Register	297
	2.18.29	IOTLB REG—IOTLB Invalidate Register	298
	2.18.30	FRCDI_REG—Fault Recording Low Register	300
	2.18.31	FRCDH REG—Fault Recording High Register	301
	2.18.32	VTPOLICY—DMA Reman Engine Policy Control Register	302
2 19	PCU MCH	RAR Registers	303
2.15	2 19 1	MEM TRMI ESTIMATION CONFIG-Memory	505
	2.19.1	Thermal Estimation Configuration Register	304
	2.19.2	MEM_TRMI_THRESHOLDS_CONFIG—Memory	
	212912	Thermal Thresholds Configuration Register	305
	2.19.3	MEM TRMI STATUS REPORT—Memory Thermal	
		Status Report Register	306
	2.19.4	MEM TRML TEMPERATURE REPORT—Memory	
		Thermal Temperature Report Register	307
	2.19.5	MEM TRML INTERRUPT-Memory Thermal	
		Interrupt Register	307
	2.19.6	GT PERF STATUS—GT Performance Status Register	308
	2.19.7	RP_STATE_LIMITS—RP-State Limitations Register	308
	2.19.8	RP_STATE_CAP—RP State Capability Register	309
	2.19.9	PCU MMIO FREO CLIPPING CAUSE STATUS Register	309
	2.19.10	PCU MMIO FREO CLIPPING CAUSE LOG Register	311
	2.19.11	SSKPD—Sticky Scratchpad Data Register	313
2.20	PXPFPBAI	Registers	315
2120	2.20.1	FPVC0RCTI — FP VC 0 Resource Control Register	315
2.21	Default P	EG/DMI VTd Remanning Engine Registers	316
	2.21.1	VFR RFG—Version Register	317
	2 21 2	CAP_REG—Canability Register	318
	2 21 3	FCAP REG—Extended Canability Register	322
	2.21.5	GCMD_REG—Global Command Register	322
	2.21.4	GSTS REG-Global Status Register	325
	2.21.5	PTADDP PEG_Poot_Entry Table Address Pegister	328
	2.21.0	CCMD_PEG_Context Command Pegister	320
	2.21.7	ESTS DEG_Eault Status Degister	323
	2.21.0	FECTL DEC_Fault Event Control Degister	222
	2.21.9	FEDATA PEG_Fault Event Data Pegister	221
	2.21.10	FEADDP DEG_Eault Event Address Pogister	224
	2.21.11	FELADDR_REG = Fault Event Upper Address Register	224
	2.21.12	AELOC DEC Advanced Fault Log Degister	225
	2.21.13	DMEN DEC Drotocted Memory Enable Degister	222
	2.21.14	PMEN_REG—PTOLECLEU MEITIOLY ETIADIE REGISLEL	000
	2.21.15	PLMBASE_REG—Protected Low-Memory Base Register	33/
	2.21.10	PLIMENTIN_KEG—Protected Low-Memory LIMIT Register	338
	2.21.17	Primidase_keg—Protected High-Mercana Lingh Degister	339
	2.21.18	PHIMILIMII_KEG—Protected High-Memory Limit Register	340
	2.21.19	IQH_KEG—Invalidation Queue Head Kegister	341
	2.21.20		341
	2.21.21	IQA_KEG—Invalidation Queue Address Register	342
	2.21.22	ICS REG—Invalidation Completion Status Register	343
	2 24 22		- · -
	2.21.23	IECTL_REG—Invalidation Event Control Register	343

2.21.25	IEADDR_REG—Invalidation Event Address Register	345
2.21.26	IEUADDR_REG—Invalidation Event Upper Address Register	345
2.21.27	IRTA_REG—Interrupt Remapping Table Address Register	346
2.21.28	IVA_REG—Invalidate Address Register	347
2.21.29	IOTLB_REG—IOTLB Invalidate Register	348

Figures

2-1	System Address Range Example	19
2-2	DOS Legacy Address Range	20
2-3	Main Memory Address Range	22
2-4	PCI Memory Address Range	26
2-5	Case 1 – Less than 4 GB of Physical Memory (no remap)	31
2-6	Case 2 – Greater than 4 GB of Physical Memory	32
2-7	Example: DMI Upstream VC0 Memory Map	41
2-8	PEG Upstream VC0 Memory Map	43

Tables

2-1	Register Attributes and Terminology	15
2-2	Register Attribute Modifiers	16
2-3	PCI Devices and Functions	16
2-4	SMM Regions	37
2-5	IGD Frame Buffer Accesses	44
2-6	IGD VGA I/O Mapping	44
2-7	VGA and MDA I/O Transaction Mapping	45
2-8	PCI Device 0, Function 0 Configuration Space Register Address Map	47
2-9	PCI Device 1 Function 0–2 Configuration Space Register Address Map	89
2-10	PCI Device 1 Function 0–2 Extended Configuration Register Address Map	135
2-11	PCI Device 2 Configuration Space Register Address Map	151
2-12	Device 2 IO Register Address Map	163
2-13	PCI Device 6 Register Address Map	164
2-14	PCI Device 6 Extended Configuration Register Address Map	206
2-15	DMIBAR Register Address Map	220
2-16	MCHBAR Registers in Memory Controller – Channel 0 Register Address Map	242
2-17	MCHBAR Registers in Memory Controller – Channel 1 Register Address Map	250
2-18	MCHBAR Registers in Memory Controller –Integrated Memory Peripheral	
	Hub (IMPH) Register Address Map	257
2-19	MCHBAR Registers in Memory Controller – Common Register Address Map	259
2-20	Memory Controller MMIO Registers Broadcast Group Register Address Map	
2-21	Integrated Graphics VTd Remapping Engine Register Address Map	
2-22	PCU MCHBAR Register Address Map	
2-23	PXPEPBAR Address Map	
2-24	Default PEG/DMI VTd Remapping Engine Register Address Map	

Revision History

Revision Number	Description	Revision Date
001	Initial release	April 2012
002	 Updated Section 2.6 to reflect support for Functions 0–2. Updated Section 2.7 to reflect support for Functions 0–2. 	June 2012

§§

1 Introduction

This is Volume 2 of the Datasheet for the following products:

• Desktop 3rd Generation Intel[®] Core[™] processor family

The processor contains one or more PCI devices within a single physical component. The configuration registers for these devices are mapped as devices residing on the PCI Bus assigned for the processor socket. This document describes the configuration space registers or device-specific control and status registers (CSRs) only. This document does NOT include Model Specific Registers (MSRs).

- **Note:** Throughout this document, Desktop 3rd Generation Intel[®] Core[™] processor family may be referred to simply as "processor".
- **Note:** Throughout this document, the $Intel^{\mathbb{R}}$ 6/7 Series Chipset Platform Controller Hub may also be referred to as "PCH".
- *Note:* The term "DT" refers to desktop platforms.
- *Note:* PCI Express* Hot-Plug is not supported on the processor.

§§

Introduction

2 Processor Configuration Registers

This chapter contains the following:

- Register terminology
- PCI Devices and Functions on processor
- System address map
- Processor register introduction
- Detailed register bit descriptions

2.1 Register Terminology

Table 2-1 lists the register-related terminology and access attributes that are used in this document. Table 2-2 provides the attribute modifiers.

Table 2-1. Register Attributes and Terminology

Item	Description	
RO	Read Only: These bits can only be read by software, writes have no effect. The value of the bits is determined by the hardware only.	
RW	Read / Write: These bits can be read and written by software.	
RW1C	Read / Write 1 to Clear: These bits can be read and cleared by software. Writing a '1' to a bit will clear it, while writing a '0' to a bit has no effect. Hardware sets these bits.	
RW0C	Read / Write 0 to Clear: These bits can be read and cleared by software. Writing a '0' to a bit will clear it, while writing a '1' to a bit has no effect. Hardware sets these bits.	
RW1S	Read / Write 1 to Set: These bits can be read and set by software. Writing a '1' to a bit will set it, while writing a '0' to a bit has no effect. Hardware clears these bits.	
RsvdP	Reserved and Preserved: These bits are reserved for future RW implementations and their value must not be modified by software. When writing to these bits, software must preserve the value read. When software updates a register that has RsvdP fields, it must read the register value first so that the appropriate merge between the RsvdP and updated fields will occur.	
RsvdZ	Reserved and Zero: These bits are reserved for future RW1C implementations. Software must use 0 for writes.	
	Write Only: These bits can only be written by software, reads return zero.	
WO	Note: Use of this attribute type is deprecated and can only be used to describe bits without persistent state.	
PC	Read Clear: These bits can only be read by software, but a read causes the bits to be cleared. Hardware sets these bits.	
ĸĊ	Note: Use of this attribute type is only allowed on legacy functions, as side-effects on reads are not desirable.	
RSW1C	Read Set / Write 1 to Clear: These bits can be read and cleared by software. Reading a bit will set the bit to '1'. Writing a '1' to a bit will clear it, while writing a '0' to a bit has no effect.	
PCW/	Read Clear / Write: These bits can be read and written by software, but a read causes the bits to be cleared.	
KUW	Note: Use of this attribute type is only allowed on legacy functions, as side-effects on reads are not desirable.	

Table 2-2. Register Attribute Modifiers

Attribute Modifier	Applicable Attribute	Description	
S	RO (w/ -V)	Sticky: These bits are only re-initialized to their Reset Value by a "Power Good Reset". Note: Does not apply to RO (constant) bits.	
	RW		
	RW1C		
	RW1S		
-К	RW	Key: These bits control the ability to write other bits (identified with a 'Lock' modifier)	
-L	RW	Lock: Hardware can make these bits "Read Only" using a separate	
	WO	Note: Mutually exclusive with 'Once' modifier.	
-0	RW	Once: After reset, these bits can only be written by software once, after which they become "Read Only"	
	WO	Note: Mutually exclusive with 'Lock' modifier and does not make sense with 'Variant' modifier.	
-FW	RO	Firmware Write: The value of these bits can be updated by firmware (PCU, TAP, and so on).	
-V	RO	Variant: The value of these bits can be updated by hardware.	
		Note: RW1C and RC bits are variant by definition and therefore do not need to be modified.	

2.2 PCI Devices and Functions

Table 2-3. PCI Devices and Functions

Description	DID	Device	Function
DRAM Controller	0150h	0	0
PCI Express* Controller	0151h	1	0
PCI Express Controller	0155h	1	1
PCI Express Controller	0159h	1	2
Integrated Graphics Device	0152h	2	0
PCI Express Controller	015Dh	6	0

Note: Not all devices are enabled in all configurations.

2.3 System Address Map

The processor supports 512 GB (39 bit) of addressable memory space and 64 KB+3 of addressable I/O space.

This section focuses on how the memory space is partitioned and the use of the separate memory regions. I/O address space has simpler mapping and is explained near the end of this section.

The processor supports PEG port upper prefetchable base/limit registers. This allows the PEG unit to claim I/O accesses above 32 bit. Addressing of greater than 4 GB is allowed on either the DMI Interface or PCI Express* (PCIe*) interface. The processor supports a maximum of 32 GB of DRAM. No DRAM memory will be accessible above 32 GB. DRAM capacity is limited by the number of address pins available. There is no hardware lock to stop someone from inserting more memory than is addressable.

When running in internal graphics mode, processor initiated TileX/Tiley/linear reads/writes to GMADR range are supported. Write accesses to GMADR linear regions are supported from both DMI and PEG. GMADR write accesses to tileX and tileY regions (defined using fence registers) are not supported from DMI or the PEG port. GMADR read accesses are not supported from either DMI or PEG.

In the following sections, it is assumed that all of the compatibility memory ranges reside on the DMI Interface. The exception to this rule is VGA ranges, which may be mapped to PCI Express, DMI, or to the internal graphics device (IGD). In the absence of more specific references, cycle descriptions referencing PCI should be interpreted as the DMI Interface/PCI, while cycle descriptions referencing PCI Express or IGD are related to the PCI Express bus or the internal graphics device respectively. The processor does not remap APIC or any other memory spaces above TOLUD (Top of Low Usable DRAM). The TOLUD register is set to the appropriate value by BIOS. The remapbase/remaplimit registers remap logical accesses bound for addresses above 4 GB onto physical addresses that fall within DRAM.

The Address Map includes a number of programmable ranges:

- Device 0:
 - PXPEPBAR PxP egress port registers. (4 KB window)
 - MCHBAR Memory mapped range for internal MCH registers. (32 KB window)
 - DMIBAR –This window is used to access registers associated with the processor/PCH Serial Interconnect (DMI) register memory range. (4 KB window)
 - GGC.GMS Graphics Mode Select. Used to select the amount of main memory that is pre-allocated to support the internal graphics device in VGA (non-linear) and Native (linear) modes. (0–1 GB options).
 - GGC.GGMS GTT Graphics Memory Size. Used to select the amount of main memory that is pre-allocated to support the Internal Graphics Translation Table. (0–2 MB options).

For each of the following five device functions:

- Device 1, Function 0: (PCIe* x16 Controller)
- Device 1, Function 1: (PCIe x8 Controller)
- Device 1, Function 2: (PCIe x4 Controller)

- Device 6, Function 0: (PCIe x4 Controller)
 - MBASE/MLIMIT PCI Express port non-prefetchable memory access window.
 - PMBASE/PMLIMIT PCI Express port prefetchable memory access window.
 - PMUBASE/PMULIMIT PCI Express port upper prefetchable memory access window
 - IOBASE/IOLIMIT PCI Express port I/O access window.
- Device 2, Function 0: (Integrated Graphics Device (IGD))
 - IOBAR I/O access window for internal graphics. Through this window address/data register pair, using I/O semantics, the IGD and internal graphics instruction port registers can be accessed. Note, this allows accessing the same registers as GTTMMADR. The IOBAR can be used to issue writes to the GTTMMADR or the GTT table.
 - GMADR Internal graphics translation window (128 MB, 256 MB, 512 MB window).
 - GTTMMADR This register requests a 4 MB allocation for combined Graphics Translation Table Modification Range and Memory Mapped Range. GTTADR will be at GTTMMADR + 2 MB while the MMIO base address will be the same as GTTMMADR.

The rules for the above programmable ranges are:

- 1. For security reasons, the processor will now positively decode (FFE0_0000h to FFFF_FFFh) to DMI. This ensures the boot vector and BIOS execute off PCH.
- ALL of these ranges MUST be unique and NON-OVERLAPPING. It is the BIOS or system designers' responsibility to limit memory population so that adequate PCI, PCI Express, High BIOS, PCI Express Memory Mapped space, and APIC memory space can be allocated.
- 3. In the case of overlapping ranges with memory, the memory decode will be given priority. This is an Intel TXT requirement. It is necessary to get Intel TXT protection checks, avoiding potential attacks.
- 4. There are NO Hardware Interlocks to prevent problems in the case of overlapping ranges.
- 5. Accesses to overlapped ranges may produce indeterminate results.
- 6. The only peer-to-peer cycles allowed below the Top of Low Usable memory (register TOLUD) are DMI Interface to PCI Express VGA range writes. Note that peer to peer cycles to the Internal Graphics VGA range are not supported.

Figure 2-1 shows the system memory address map in a simplified form.

2.3.1 Legacy Address Range

This area is divided into the following address regions:

- 0-640 KB DOS Area
- 640-768 KB Legacy Video Buffer Area
- 768-896 KB in 16 KB sections (total of 8 sections) Expansion Area
- 896-960 KB in 16 KB sections (total of 4 sections) Extended System BIOS Area
- 960 KB-1 MB Memory System BIOS Area

Figure 2-2. DOS Legacy Address Range

2.3.1.1 DOS Range (0h–9_FFFh)

The DOS area is 640 KB (0000_0000h-0009_FFFFh) in size and is always mapped to the main memory controlled by the memory controller.

2.3.1.2 Legacy Video Area (A_0000h-B_FFFh)

The legacy 128 KB VGA memory range, frame buffer, (000A_0000h-000B_FFFFh) can be mapped to IGD (Device 2), to PCI Express (Device 1 or Device 6), and/or to the DMI Interface. The appropriate mapping depends on which devices are enabled and the programming of the VGA steering bits. Based on the VGA steering bits, priority for VGA mapping is constant. The processor always decodes internally mapped devices first.

Non-SMM-mode processor accesses to this range are considered to be to the Video Buffer Area as described above.

The processor always positively decodes internally mapped devices, namely the IGD and PCI Express. Subsequent decoding of regions mapped to PCI Express or the DMI Interface depends on the Legacy VGA configuration bits (VGA Enable & MDAP). This region is also the default for SMM space.

Compatible SMRAM Address Range (A_0000h-B_FFFFh)

When compatible SMM space is enabled, SMM-mode processor accesses to this range route to physical system DRAM at 000A_0000h-000B_FFFFh.

PCI Express and DMI originated cycles to enable SMM space are not allowed and are considered to be to the Video Buffer Area, if IGD is not enabled as the VGA device. DMI initiated writes cycles are attempted as peer writes cycles to a VGA enabled PCIe port.

Monochrome Adapter (MDA) Range (B_0000h-B_7FFh)

Legacy support requires the ability to have a second graphics controller (monochrome) in the system. Accesses in the standard VGA range are forwarded to IGD, PCI Express, or the DMI Interface (depending on configuration bits). Since the monochrome adapter may be mapped to any of these devices, the processor must decode cycles in the MDA range (000B_0000h-000B_7FFFh) and forward either to IGD, PCI Express, or the DMI Interface. This capability is controlled by the VGA steering bits and the legacy configuration bit (MDAP bit). In addition to the memory range B0000h to B7FFFh, the processor decodes I/O cycles at 3B4h, 3B5h, 3B8h, 3B9h, 3BAh and 3BFh and forwards them to the either IGD, PCI Express, and/or the DMI Interface.

PEG 16-bit VGA Decode

The *PCI to PCI Bridge Architecture Specification Revision 1.2*, it is required that 16-bit VGA decode be a feature.

When 16-bit VGA decode is disabled, the decode of VGA I/O addresses is performed on 10 lower bits only, essentially mapping also the aliases of the defined I/O addresses.

2.3.1.3 **PAM (C_0000h-F_FFFh)**

The 13 sections from 768 KB to 1 MB comprise what is also known as the PAM Memory Area. Each section has Read enable and Write enable attributes.

The PAM registers are mapped in Device 0 configuration space.

- ISA Expansion Area (C_0000h-D_FFFFh)
- Extended System BIOS Area (E_0000h-E_FFFh)
- System BIOS Area (F_0000h-F_FFFFh)

The processor decodes the core request; then routes to the appropriate destination (DRAM or DMI).

Snooped accesses from PCI Express or DMI to this region are snooped on processor caches.

Non-snooped accesses from PCI Express or DMI to this region are always sent to DRAM.

Graphics translated requests to this region are not allowed. If such a mapping error occurs, the request will be routed to C_0000. Writes will have the byte enables de-asserted.

2.3.2 Main Memory Address Range (1 MB – TOLUD)

This address range extends from 1 MB to the top of Low Usable physical memory that is permitted to be accessible by the processor (as programmed in the TOLUD register). The processor will route all addresses within this range to the DRAM unless it falls into the optional TSEG, optional ISA Hole, or optional IGD stolen VGA memory.

Figure 2-3. Main Memory Address Range

2.3.2.1 ISA Hole (15 MB - 16 MB)

The ISA Hole is enabled in the Legacy Access Control Register in Device 0 configuration space. If no hole is created, the processor will route the request to DRAM. If a hole is created, the processor will route the request to DMI, since the request does not target DRAM.

Graphics translated requests to the range will always route to DRAM.

2.3.2.2 TSEG

For processor initiated transactions, the processor relies on correct programming of SMM Range Registers (SMRR) to enforce TSEG protection.

TSEG is below IGD stolen memory, which is at the Top of Low Usable physical memory (TOLUD). BIOS will calculate and program the TSEG BASE in Device 0 (TSEGMB), used to protect this region from DMA access. Calculation is: TSEGMB = TOLUD – DSM SIZE – GSM SIZE – TSEG SIZE

SMM-mode processor accesses to enabled TSEG access the physical DRAM at the same address.

When the extended SMRAM space is enabled, processor accesses to the TSEG range without SMM attribute or without WB attribute are handled by the processor as invalid accesses.

Non-processor originated accesses are not allowed to SMM space. PCI Express, DMI, and Internal Graphics originated cycle to enabled SMM space are handled as invalid cycle type with reads and writes to location C_0000h and byte enables turned off for writes.

2.3.2.3 Protected Memory Range (PMR) – (programmable)

For robust and secure launch of the MVMM, the MVMM code and private data needs to be loaded to a memory region protected from bus master accesses. Support for the protected memory region is required for DMA-remapping hardware implementations on platforms supporting Intel TXT, and is optional for non-Intel TXT platforms. Since the protected memory region needs to be enabled before the MVMM is launched, hardware must support enabling of the protected memory region independently from enabling the DMA-remapping hardware.

As part of the secure launch process, the SINIT-AC module verifies the protected memory regions are properly configured and enabled. Once launched, the MVMM can setup the initial DMA-remapping structures in protected memory (to ensure they are protected while being setup) before enabling the DMA-remapping hardware units.

To optimally support platform configurations supporting varying amounts of main memory, the protected memory region is defined as two non-overlapping regions:

- **Protected Low-memory Region**: This is defined as the protected memory region below 4 GB to hold the MVMM code/private data, and the initial DMA-remapping structures that control DMA to host physical addresses below 4 GB. DMA-remapping hardware implementations on platforms supporting Intel TXT are required to support protected low-memory region5.
- **Protected High-memory Region**: This is defined as a variable sized protected memory region above 4 GB, enough to hold the initial DMA-remapping structures for managing DMA accesses to addresses above 4 GB. DMA-remapping hardware implementations on platforms supporting Intel TXT are required to support protected high-memory region6, if the platform supports main memory above 4 GB.

Once the protected low/high memory region registers are configured, bus master protection to these regions is enabled through the Protected Memory Enable register. For platforms with multiple DMA-remapping hardware units, each of the DMA-remapping hardware units must be configured with the same protected memory regions and enabled.

2.3.2.4 DRAM Protected Range (DPR)

This protection range only applies to DMA accesses and GMADR translations. It serves a purpose of providing a memory range that is only accessible to processor streams.

The DPR range works independent of any other range, including the PMRC checks in VTd. It occurs post any VTd translation. Therefore, incoming cycles are checked against this range after the VTd translation and faulted if they hit this protected range, even if they passed the VTd translation.

The system will set up:

- 0 to (TSEG_BASE DPR size 1) for DMA traffic
- TSEG_BASE to (TSEG_BASE DPR size) as no DMA.

After some time, software could request more space for not allowing DMA. It will get some more pages and make sure there are no DMA cycles to the new region. DPR size is changed to the new value. When it does this, there should not be any DMA cycles going to DRAM to the new region.

If there were cycles from a rogue device to the new region, then those could use the previous decode until the new decode can ensure PV. No flushing of cycles is required. On a clock by clock basis proper decode with the previous or new decode needs to be ensured.

All upstream cycles from 0 to (TSEG_BASE – 1 - DPR size), and not in the legacy holes (VGA), are decoded to DRAM.

Because Bus Master cycles can occur when the DPR size is changed, the DPR size needs to be treated dynamically.

2.3.2.5 Pre-allocated Memory

Voids of physical addresses that are not accessible as general system memory and reside within system memory address range (< TOLUD) are created for SMM-mode, legacy VGA graphics compatibility, and graphics GTT stolen memory. **It is the responsibility of BIOS to properly initialize these regions**.

2.3.2.6 Graphics Stolen Spaces

2.3.2.6.1 GTT Stolen Space (GSM)

GSM is allocated to store the graphics (GFX) translation table entries.

GSM always exists regardless of VT-d as long as internal graphics is enabled. This space is allocated to store accesses as page table entries are getting updated through virtual GTTMMADR range. Hardware is responsible to map PTEs into this physical space.

Direct accesses to GSM are not allowed; only hardware translations and fetches can be directed to GSM.

2.3.2.7 Intel[®] Management Engine (Intel[®] ME) UMA

Intel ME (the AMT Intel Management Engine) can be allocated UMA memory. Intel MEmemory is "stolen" from the top of the Host address map. The Intel ME stolen memory base is calculated by subtracting the amount of memory stolen by the Intel Management Engine from TOM.

Only Intel ME can access this space; it is not accessible by or coherent with any processor side accesses.

2.3.3 PCI Memory Address Range (TOLUD – 4 GB)

This address range, from the top of low usable DRAM (TOLUD) to 4 GB is normally mapped to the DMI Interface.

Device 0 exceptions are:

- 1. Addresses decoded to the egress port registers (PXPEPBAR)
- 2. Addresses decoded to the memory mapped range for internal MCH registers (MCHBAR)
- 3. Addresses decoded to the registers associated with the MCH/PCH Serial Interconnect (DMI) register memory range (DMIBAR)

For each PCI Express port, there are two exceptions to this rule:

- 1. Addresses decoded to the PCI Express Memory Window defined by the MBASE, MLIMIT, registers are mapped to PCI Express.
- 2. Addresses decoded to the PCI Express prefetchable Memory Window defined by the PMBASE, PMLIMIT, registers are mapped to PCI Express

In integrated graphics configurations, there are exceptions to this rule:

- 1. Addresses decoded to the internal graphics translation window (GMADR)
- 2. Addresses decoded to the internal graphics translation table or IGD registers (GTTMMADR)

In a VT enabled configuration, there are exceptions to this rule:

- 1. Addresses decoded to the memory mapped window to Graphics VT remap engine registers (GFXVTBAR)
- Addresses decoded to the memory mapped window to DMI VC1 VT remap engine registers (DMIVC1BAR)
- 3. Addresses decoded to the memory mapped window to PEG/DMI VC0 VT remap engine registers (VTDPVC0BAR)
- 4. TCm accesses (to Intel ME stolen memory) from PCH do not go through VT remap engines.

Some of the MMIO Bars may be mapped to this range or to the range above TOUUD.

There are sub-ranges within the PCI Memory address range defined as APIC Configuration Space, MSI Interrupt Space, and High BIOS Address Range. The exceptions listed above for internal graphics and the PCI Express ports **Must Not** overlap with these ranges.

Figure 2-4. PCI Memory Address Range

2.3.3.1 APIC Configuration Space (FEC0_0000h - FECF_FFFh)

This range is reserved for APIC configuration space. The I/O APIC(s) usually reside in the PCH portion of the chipset, but may also exist as stand-alone components like PXH.

The IOAPIC spaces are used to communicate with IOAPIC interrupt controllers that may be populated in the system. Since it is difficult to relocate an interrupt controller using plug-and-play software, fixed address decode regions have been allocated for them. Processor accesses to the default IOAPIC region (FEC0_0000h to FEC7_FFFFh) are always forwarded to DMI.

The processor optionally supports additional I/O APICs behind the PCI Express "Graphics" port. When enabled using the APIC_BASE and APIC_LIMIT registers (mapped PCI Express Configuration space offset 240h and 244h), the PCI Express port(s) will positively decode a subset of the APIC configuration space.

Memory requests to this range would then be forwarded to the PCI Express port. This mode is intended for the entry Workstation/Server SKU of the MCH, and would be disabled in typical Desktop systems. When disabled, any access within entire APIC Configuration space (FEC0_0000h to FECF_FFFFh) is forwarded to DMI.

2.3.3.2 HSEG (FEDA_0000h - FEDB_FFFh)

This decode range is not supported on the processor platform.

2.3.3.3 MSI Interrupt Memory Space (FEE0_0000 – FEEF_FFFF)

Any PCI Express or DMI device may issue a Memory Write to 0FEEx_xxxh. This Memory Write cycle does not go to DRAM. The system agent will forward this Memory Write along with the data to the processor as an Interrupt Message Transaction.

2.3.3.4 High BIOS Area

For security reasons, the processor will positively decode this range to DMI. This positive decode will ensure any overlapping ranges will be ignored.

The top 2 MB (FFE0_0000h-FFFF_FFFh) of the PCI Memory Address Range is reserved for System BIOS (High BIOS), extended BIOS for PCI devices, and the A20 alias of the system BIOS. The processor begins execution from the High BIOS after reset. This region is positively decoded to DMI. The actual address space required for the BIOS is less than 2 MB but the minimum processor MTRR range for this region is 2 MB so that full 2 MB must be considered.

2.3.4 Main Memory Address Space (4 GB to TOUUD)

The processor supports 39-bit addressing.

The maximum main memory size supported is 32 GB total DRAM memory. A hole between TOLUD and 4 GB occurs when main memory size approaches 4 GB or larger. As a result, TOM, and TOUUD registers and REMAPBASE/REMAPLIMIT registers become relevant.

The remap configuration registers exist to remap lost main memory space. The greater than 32 bit remap handling will be handled similar to other MCHs.

Upstream read and write accesses above 39-bit addressing will be treated as invalid cycles by PEG and DMI.

Top of Memory (TOM)

The "Top of Memory" (TOM) register reflects the total amount of populated physical memory. This is NOT necessarily the highest main memory address (holes may exist in main memory address map due to addresses allocated for memory mapped I/O above TOM).

The Intel Management Engine (ME) stolen size register reflects the total amount of physical memory stolen by the Intel Management Engine. The Intel ME stolen memory is located at the top of physical memory. The Intel ME stolen memory base is calculated by subtracting the amount of memory stolen by the Intel Management Engine from TOM.

Top of Upper Usable DRAM (TOUUD)

The Top of Upper Usable Dram (TOUUD) register reflects the total amount of addressable DRAM. If remap is disabled, TOUUD will reflect TOM minus Intel Management Engine stolen size. If remap is enabled, then it will reflect the remap limit.

Note: When there is more than 4 GB of DRAM and reclaim is enabled, the reclaim base will be the same as TOM minus Intel ME stolen memory size to the nearest 1 MB alignment (shown in the following case 2).

Top of Low Usable DRAM (TOLUD)

TOLUD register is restricted to 4 GB memory (A[31:20]), but the processor can support up to 32 GB, limited by DRAM pins. For physical memory greater than 4 GB, the TOUUD register helps identify the address range in between the 4 GB boundary and the top of physical memory. This identifies memory that can be directly accessed (including remap address calculation), which is useful for memory access indication and early path indication. TOLUD can be 1 MB aligned.

TSEG_BASE

The "TSEG_BASE" register reflects the total amount of low addressable DRAM, below TOLUD. BIOS will calculate and program this register; so, the system agent has knowledge of where (TOLUD) – (GFX stolen) – (GFX GTT stolen) – (TSEG) is located. I/O blocks use this minus DPR for upstream DRAM decode.

2.3.4.1 Memory Re-claim Background

The following are examples of Memory Mapped I/O devices are typically located below 4 GB:

- High BIOS
- TSEG
- GFX stolen
- GTT stolen
- XAPIC
- Local APIC
- MSI Interrupts
- Mbase/Mlimit
- PMbase/PMlimit
- Memory Mapped IO space that supports only 32B addressing

The processor provides the capability to re-claim the physical memory overlapped by the Memory Mapped IO logical address space. The MCH re-maps physical memory from the Top of Low Memory (TOLUD) boundary up to the 4 GB boundary to an equivalent sized logical address range located just below the Intel Management Engine stolen memory.

2.3.4.2 Indirect Accesses to MCHBAR Registers

Similar to prior chipsets, MCHBAR registers can be indirectly accessed using:

- Direct MCHBAR access decode:
 - Cycle to memory from processor
 - Hits MCHBAR base, AND
 - MCHBAR is enabled, AND
 - Within MMIO space (above and below 4 GB)
- GTTMMADR (10000h-13FFFh) range -> MCHBAR decode:
 - Cycle to memory from processor, AND
 - Device 2 (IGD) is enabled, AND
 - Memory accesses for Device 2 is enabled, AND
 - Targets graphics MMIO Function 0, AND
 - $-\,$ MCHBAR is enabled or cycle is a read. If MCHBAR is disabled, only read access is allowed.
- MCHTMBAR -> MCHBAR (Thermal Monitor)
 - Cycle to memory from processor, AND
 - AND Targets MCHTMBAR base
- IOBAR -> GTTMMADR -> MCHBAR.
 - Follows IOBAR rules. See GTTMMADR information above as well.

2.3.4.3 Memory Remapping

An incoming address (referred to as a logical address) is checked to see if it falls in the memory re-map window. The bottom of the re-map window is defined by the value in the REMAPBASE register. The top of the re-map window is defined by the value in the REMAPLIMIT register. An address that falls within this window is remapped to the physical memory starting at the address defined by the TOLUD register. The TOLUD register must be 1M aligned.

2.3.4.4 Hardware Remap Algorithm

The following pseudo-code defines the algorithm used to calculate the DRAM address to be used for a logical address above the top of physical memory made available using re-claiming.

IF (ADDRESS_IN[38:20] \geq REMAP_BASE[35:20]) AND

 $(ADDRESS_IN[38:20] \le REMAP_LIMIT[35:20])$ THEN

ADDRESS_OUT[38:20] = (ADDRESS_IN[38:20] - REMAP_BASE[35:20]) + 0000000b & TOLUD[31:20]

ADDRESS_OUT[19:0] = ADDRESS_IN[19:0]

2.3.4.5 Programming Model

The memory boundaries of interest are:

- Bottom of Logical Address Remap Window defined by the REMAPBASE register, which is calculated and loaded by BIOS.
- Top of Logical Address Remap Window defined by the REMAPLIMIT register, which is calculated and loaded by BIOS.
- Bottom of Physical Remap Memory defined by the existing TOLUD register.
- Top of Physical Remap Memory, which is implicitly defined by either 4 GB or TOM minus Intel Management Engine stolen size.

Mapping steps:

- 1. Determine TOM
- 2. Determine TOM minus Intel ME stolen size
- 3. Determine MMIO allocation
- 4. Determine TOLUD
- 5. Determine graphics stolen base
- 6. Determine graphics GTT stolen base
- 7. Determine TSEG base
- 8. Determine remap base/limit
- 9. Determine TOUUD

The following diagrams show the three possible general cases of remapping.

- Case 1: Less than 4 GB of Physical Memory, no remap
- Case 2: Greater than 4 GB of Physical Memory
- Case 3: 4 GB or Less of Physical Memory

2.3.4.5.1 Case 1 – Less than 4 GB of Physical Memory (no remap)

Physical Memory Host/System View (DRAM Controller View) **4 GB** ТОМ 1 MB aligned ME-UMA 1 MB aligned TOUUD BASE ME BASE 1 MB aligned Wasted (Only if 4 GB minus PCI MMIO space is PCI MMIO greater than 4 GB minus ME stolen base) TOLUD BASE 1 MB aligned 1 MB aligned GFX Stolen **GFX Stolen BASE** 1 MB aligned GFX GTT STOLEN GFX GTT Stolen BASE 1 MB aligned TSEG TSEG **TSEG BASE** 1 MB aligned "LOW **OS VISIBLE** DRAM" < 4 GB 0 0

Figure 2-5. Case 1 – Less than 4 GB of Physical Memory (no remap)

- Populated Physical Memory = 2 GB
- Address Space allocated to Memory Mapped IO = 1 GB
- Remapped Physical Memory = 0 GB
- TOM 00_7FF0_0000h (2 GB)
- ME base 00_7FF0_0000h (1 MB)
- ME Mask 00_7FF0_0000h
- TOUUD 00_0000_0000h (Disable Avoid access above 4 GB)
- TOLUD 00_7FE0_0000h (2 GB minus 1 MB)
- REMAPBASE 7F_FFF_0000h (default)
- REMAPLIMIT 00_0000_0000h (0 GB boundary, default)

2.3.4.5.2 Case 2 – Greater than 4 GB of Physical Memory

Figure 2-6. Case 2 – Greater than 4 GB of Physical Memory

In this case the amount of memory remapped is the range between TOLUD and 4 GB. This physical memory will be mapped to the logical address range defined between the REMAPBASE and the REMAPLIMIT registers.

Example: 5 GB of Physical Memory, with 1 GB allocated to Memory Mapped IO

- Populated Physical Memory = 5 GB
- Address Space allocated to memory mapped IO (including Flash, APIC, and Intel TXT) = 1 GB
- Remapped Physical Memory = 1 GB
- TOM 01_4000_0000h (5 GB)
- ME stolen size 00000b (0 MB)
- TOUUD 01_8000_0000h (6 GB) (1 MB aligned)
- TOLUD 00_C000_000h (3 GB)
- REMAPBASE 01_4000_0000h (5 GB)
- REMAPLIMIT 01_7FF0_0000h (6 GB-1)

The Remap window is inclusive of the Base and Limit addresses. In the decoder A[19:0] of the Remap Base Address are assumed to be 0s. Similarly, A[19:0] of the Remap Limit Address are assumed to be Fs. Thus, the bottom of the defined memory range will be aligned to a MB boundary and the top of the defined range will be one less than a MB boundary.

Setting the Remap Base register to a value greater than that programmed into the Remap Limit register disables the remap function.

Software Responsibility and Restrictions

- BIOS is responsible for programming the REMAPBASE and REMAPLIMIT registers based on the values in the TOLUD, TOM, and Intel ME stolen size registers.
- The amount of remapped memory defined by the REMAPBASE and REMAPLIMIT registers **must** be equal to the amount of physical memory between the TOLUD and the lower of either 4 GB or TOM minus the Intel ME stolen size.
- Addresses of MMIO region must not overlap with any part of the Logical Address Memory Remap range.
- When TOM is equal to TOLUD, remap is not needed and must be disabled by programming REMAPBASE to a value greater than the value in the REMAPLIMIT register.

Interaction with other Overlapping Address Space

The following Memory Mapped IO address spaces are all logically addressed below 4 GB where they do not overlap the logical address of the re-mapped memory region:

GFXGTTstolen	At (TOLUD – GFXstolensize) to TOLUD
GFXstolen	At ((TOLUD – GFXstolensize) – GFXGTTstolensize) to (TOLUD – GFXstolensize)
TSEG	At ((TOLUD – GFXstolensize – GFXGTTstolensize) – TSEGSIZE) to (TOLUD – GFXGTTstolensize – GFXstolensize)
High BIOS	Reset vector just under 4 GB boundary (Positive decode to DMI occurs)
XAPIC	At fixed address below 4 GB
Local APIC	At fixed address below 4 GB

MSI Interrupts	At fixed address below 4 GB
GMADR	64 bit BARs
GTTMMADR	64 bit BARs MBASE/MLIMIT
PXPEPBAR	39 bit BAR
DMIBAR	39 bit BAR
MCHBAR	39 bit BAR
TMBAR	64 bit BAR
PMBASE/PMLIMIT	64 bit BAR (using Upper PMBASE/PMLIMIT)
CHAPADR	64 bit BAR
GFXVTBAR	39 bit BARs
VTDPVC0BAR	39 bit BARs

Implementation Notes

- Remap applies to transactions from all interfaces. All upstream PEG/DMI transactions that are snooped get remapped.
- Upstream PEG/DMI transactions that are not snooped ("Snoop not required" attribute set) get remapped.
- Upstream reads and writes above TOUUD are treated as invalid cycles.
- Remapped addresses remap starting at TOLUD. They do not remap starting at TSEG_BASE. DMI and PEG need to be careful with this for both snoop and nonsnoop accesses. In other words, for upstream accesses, the range between (TOLUD – GfxStolensize – GFXGTTstolensize – TSEGSIZE-DPR) to TOLUD) will never map directly to memory.
- **Note:** Accesses from PEG/DMI should be decoded as to the type of access before they are remapped. For instance, a DMI write to FEEx_xxxxh is an interrupt transaction, but there is a DMI address that will be re-mapped to the DRAM address of FEEx_xxxxh. In all cases, the remapping of the address is done only after all other decodes have taken place.

Unmapped addresses between TOLUD and 4 GB

Accesses that don't hit DRAM or PCI space are subtractive decoded to DMI. Because the TOLUD register is used to mark the upper limit of DRAM space below the 4 GB boundary, no address between TOLUD and 4 GB ever decodes directly to main memory. Thus, even if remap is disabled, any address in this range has a non-memory destination.

The top of DRAM address space is either:

- TOLUD if there is less than 4 GB of DRAM or 32-bit addressing or
- TOUUD if there is more than 4 GB of DRAM and 36-bit addressing
- **Note:** The system address space includes the remapped range. For instance, if there is 8 GB of DRAM and 1 GB of PCI space, the system has a 9 GB address space, where DRAM lies from 0–3 GB and 4–9 GB. BIOS will report an address space of 9 GB to the operating system.

2.3.5 PCI Express* Configuration Address Space

PCIEXBAR is located in Device 0 configuration space. The processor detects memory accesses targeting PCIEXBAR. BIOS must assign this address range such that it will not conflict with any other address ranges.

See the configuration portion of this document for more details.

2.3.6 PCI Express* Graphics Attach (PEG)

The processor can be programmed to direct memory accesses to a PCI Express interface. When addresses are within either of two ranges specified using registers in each PEG(s) configuration space.

- The first range is controlled using the Memory Base (MBASE) register and Memory Limit (MLIMIT) register.
- The second range is controlled using the Pre-fetchable Memory Base (PMBASE) register and Pre-fetchable Memory Limit (PMLIMIT) register.

Conceptually, address decoding for each range follows the same basic concept. The top 12 bits of the respective Memory Base and Memory Limit registers correspond to address bits A[31:20] of a memory address. For the purpose of address decoding, the processor assumes that address bits A[19:0] of the memory base are zero and that address bits A[19:0] of the memory limit address are F_FFFFh. This forces each memory address range to be aligned to 1 MB boundary and to have a size granularity of 1 MB.

The processor positively decodes memory accesses to PCI Express memory address space as defined by the following equations:

Memory_Base_Address < Address < Memory_Limit_Address

Prefetchable_Memory_Base_Address < Address < Prefetchable_Memory_Limit_Address

The window size is programmed by the plug-and-play configuration software. The window size depends on the size of memory claimed by the PCI Express device. Normally, these ranges will reside above the Top-of-Low Usable-DRAM and below High BIOS and APIC address ranges. They MUST reside above the top of low memory (TOLUD) if they reside below 4 GB and MUST reside above top of upper memory (TOUUD) if they reside above 4 GB or they will steal physical DRAM memory space.

It is essential to support a separate Pre-fetchable range in order to apply USWC attribute (from the processor point of view) to that range. The USWC attribute is used by the processor for write combining.

Note: The processor memory range registers described above are used to allocate memory address space for any PCI Express devices sitting on PCI Express that require such a window.

The PCICMD register can override the routing of memory accesses to PCI Express. In other words, the memory access enable bit must be set to enable the memory base/limit and pre-fetchable base/limit windows.

The upper PMUBASE/PMULIMIT registers are implemented for PCI Express Specification compliance. The processor locates MMIO space above 4 GB using these registers.

2.3.7 Graphics Memory Address Ranges

The integrated memory controller can be programmed to direct memory accesses to IGD when addresses are within any of two ranges specified using registers in MCH Device 2 configuration space.

- 1. The Graphics Memory Aperture Base Register (GMADR) is used to access graphics memory allocated using the graphics translation table.
- 2. The Graphics Translation Table Base Register (GTTADR) is used to access the translation table and graphics control registers. This is part of GTTMMADR register.

These ranges can reside above the Top-of-Low-DRAM and below High BIOS and APIC address ranges. They MUST reside above the top of memory (TOLUD) and below 4 GB so they do not steal any physical DRAM memory space.

Alternatively, these ranges can reside above 4 GB, similar to other BARs which are larger than 32 bits in size.

GMADR is a Prefetchable range in order to apply USWC attribute (from the processor point of view) to that range. The USWC attribute is used by the processor for write combining.

2.3.7.1 IOBAR Mapped Access to Device 2 MMIO Space

Device 2, integrated graphics device, contains an IOBAR register. If Device 2 is enabled, then IGD registers or the GTT table can be accessed using this IOBAR. The IOBAR is composed of an index register and a data register.

MMIO_Index: MMIO_INDEX is a 32 bit register. A 32-bit (all bytes enabled) I/O write to this port loads the offset of the MMIO register or offset into the GTT that needs to be accessed. An I/O Read returns the current value of this register. I/O read/write accesses less than 32 bits in size (all bytes enabled) will not target this register.

MMIO_Data: MMIO_DATA is a 32 bit register. A 32 bit (all bytes enabled) I/O write to this port is re-directed to the MMIO register pointed to by the MMIO-index register. An I/O read to this port is re-directed to the MMIO register pointed to by the MMIO-index register. I/O read/write accesses less than 32 bits in size (all bytes enabled) will not target this register.

The result of accesses through IOBAR can be:

- Accesses directed to the GTT table (that is, route to DRAM).
- Accesses to internal graphics registers with the device.
- Accesses to internal graphics display registers now located within the PCH (that is, route to DMI).
- *Note:* GTT table space writes (GTTADR) are supported through this mapping mechanism.

This mechanism to access internal graphics MMIO registers must not be used to access VGA I/O registers that are mapped through the MMIO space. VGA registers must be accessed directly through the dedicated VGA I/O ports.

2.3.7.2 Trusted Graphics Ranges

No trusted graphics ranges are supported.

2.3.8 System Management Mode (SMM)

The Core handles all SMM mode transaction routing. Also, the platform no longer supports HSEG. The processor will not allow I/O devices access to CSEG/TSEG/HSEG ranges.

DMI Interface and PCI Express masters are not allowed to access the SMM space.

Table 2-4. SMM Regions

SMM Space Enabled	Transaction Address Space	DRAM Space (DRAM)
Compatible	000A_0000h to 000B_FFFFh	000A_0000h to 000B_FFFFh
TSEG	(TOLUD – STOLEN – TSEG) to TOLUD –STOLEN	(TOLUD – STOLEN – TSEG) to TOLUD – STOLEN

2.3.9 SMM and VGA Access through GTT TLB

Accesses through GTT TLB address translation SMM DRAM space are not allowed. Writes will be routed to Memory address 000C_0000h with byte enables de-asserted and reads will be routed to Memory address 000C_0000h. If a GTT TLB translated address hits SMM DRAM space, the graphics device will report a page table error.

PCI Express and DMI Interface originated accesses are **never** allowed to access SMM space directly or through the GTT TLB address translation. If a GTT TLB translated address hits enabled SMM DRAM space, the graphics device will report a page table error.

PCI Express and DMI Interface write accesses through GMADR range will not be snooped. Only PCI Express and DMI assesses to GMADR linear range (defined using fence registers) are supported. PCI Express and DMI Interface tileY and tileX writes to GMADR are not supported. If, when translated, the resulting physical address is to enable SMM DRAM space, the request will be remapped to address 000C_0000h with de-asserted byte enables.

PCI Express and DMI Interface read accesses to the GMADR range are not supported; therefore, will have no address translation concerns. PCI Express and DMI Interface reads to GMADR will be remapped to address 000C_0000h. The read will complete with UR (unsupported request) completion status.

GTT fetches are always decoded (at fetch time) to ensure not in SMM (actually, anything above base of TSEG or 640 KB-1 MB). Thus, they will be invalid and go to address 000C_0000h, but that is not specific to PCI Express or DMI; it applies to processor or internal graphics engines.

2.3.10 ME Stolen Memory Accesses

There are only 2 ways to legally access Intel ME stolen memory:

- PCH accesses mapped to VCm will be decoded to ensure only Intel ME stolen memory is targeted. These VCm accesses will route non-snooped directly to DRAM. This is the means by which the Intel MEengine (located within the PCH) is able to access the Intel ME stolen range.
- The Display engine is allowed to access Intel ME stolen memory as part of KVM flows. Specifically, Display initiated HHP reads (for displaying a KVM frame) and display initiated LP non-snoop writes (for display writing a KVM captured frame) to Intel ME stolen memory are allowed.

2.3.11 I/O Address Space

The system agent generates either DMI Interface or PCI Express bus cycles for all processor I/O accesses that it does not claim. Configuration Address Register (CONFIG_ADDRESS) and the Configuration Data Register (CONFIG_DATA) are used to generate PCI configuration space access.

The processor allows 64K+3 bytes to be addressed within the I/O space. The upper 3 locations can be accessed only during I/O address wrap-around when address bit 16 is asserted. Address bit 16 is asserted on the processor bus whenever an I/O access is made to 4 bytes from address 0FFFDh, 0FFFEh, or 0FFFFh. Address bit 16 is also asserted when an I/O access is made to 2 bytes from address 0FFFFh.

A set of I/O accesses are consumed by the internal graphics device if it is enabled. The mechanisms for internal graphics I/O decode and the associated control is explained later.

The I/O accesses are forwarded normally to the DMI Interface bus unless they fall within the PCI Express I/O address range as defined by the mechanisms explained below. I/O writes are NOT posted. Memory writes to PCH or PCI Express are posted. The PCI Express devices have a register that can disable the routing of I/O cycles to the PCI Express device.

The processor responds to I/O cycles initiated on PCI Express or DMI with an UR status. Upstream I/O cycles and configuration cycles should never occur. If one does occur, the transaction will complete with an UR completion status.

I/O reads that lie within 8-byte boundaries but cross 4-byte boundaries are issued from the processor as 1 transaction. It will be divided into 2 separate transactions. I/O writes that lie within 8-byte boundaries but cross 4-byte boundaries will be split into 2 transactions by the processor.

2.3.11.1 PCI Express* I/O Address Mapping

The processor can be programmed to direct non-memory (I/O) accesses to the PCI Express bus interface when processor initiated I/O cycle addresses are within the PCI Express I/O address range. This range is controlled using the I/O Base Address (IOBASE) and I/O Limit Address (IOLIMIT) registers in Device 1 Functions 0, 1, 2 or Device 6 configuration space.

Address decoding for this range is based on the following concept. The top 4 bits of the respective I/O Base and I/O Limit registers correspond to address bits A[15:12] of an I/O address. For the purpose of address decoding, the device assumes that lower 12 address bits A[11:0] of the I/O base are zero and that address bits A[11:0] of the I/O limit address are FFFh. This forces the I/O address range alignment to 4 KB boundary and produces a size granularity of 4 KB.

The processor positively decodes I/O accesses to PCI Express I/O address space as defined by the following equation:

 $I/O_Base_Address \le processor I/O Cycle Address \le I/O_Limit_Address$

The effective size of the range is programmed by the plug-and-play configuration software and it depends on the size of I/O space claimed by the PCI Express device.

The processor also forwards accesses to the Legacy VGA I/O ranges according to the settings in the PEG configuration registers BCTRL (VGA Enable) and PCICMD (IOAE), unless a second adapter (monochrome) is present on the DMI Interface/PCI (or ISA). The presence of a second graphics adapter is determined by the MDAP configuration bit. When MDAP is set, the processor will decode legacy monochrome I/O ranges and forward them to the DMI Interface. The I/O ranges decoded for the monochrome adapter are 3B4h, 3B5h, 3B8h, 3B9h, 3BAh, and 3BFh.

Note: The PEG I/O address range registers defined above are used for all I/O space allocation for any devices requiring such a window on PCI Express.

The PCICMD register can disable the routing of I/O cycles to PCI Express.

2.3.12 MCTP and KVM Flows

Refer to THE DMI2 specification for details.

MCTP cycles are not processed within the processor. MCTP cycles are merely passed from input port to destination port based on routing ID.

2.3.13 Decode Rules and Cross-Bridge Address Mapping

2.3.13.1 DMI Interface Decode Rules

All "SNOOP semantic" PCI Express transactions are kept coherent with processor caches.

All "Snoop not required semantic" cycles must reference the main DRAM address range. PCI Express non-snoop initiated cycles are not snooped.

The processor accepts accesses from DMI Interface to the following address ranges:

- All snoop memory read and write accesses to Main DRAM including PAM region (except stolen memory ranges, TSEG, A0000h–BFFFFh space)
- Write accesses to enabled VGA range, MBASE/MLIMIT, and PMBASE/PMLIMIT will be routed as peer cycles to the PCI Express interface.
- Write accesses above the top of usable DRAM and below 4 GB (not decoding to PCI Express or GMADR space) will be treated as master aborts.
- Read accesses above the top of usable DRAM and below 4 GB (not decoding to PCI Express) will be treated as unsupported requests.
- Reads and accesses above the TOUUD will be treated as unsupported requests on VC0/VCp.

DMI Interface memory read accesses that fall between TOLUD and 4 GB are considered invalid and will master abort. These invalid read accesses will be reassigned to address 000C_0000h and dispatch to DRAM. Reads will return unsupported request completion. Writes targeting PCI Express space will be treated as peer-to-peer cycles.

There is a known usage model for peer writes from DMI to PEG. A video capture card can be plugged into the PCH PCI bus. The video capture card can send video capture data (writes) directly into the frame buffer on an external graphics card (writes to the PEG port). As a result, peer writes from DMI to PEG must be supported.

I/O cycles and configuration cycles are not supported in the upstream direction. The result will be an unsupported request completion status.

DMI Interface Accesses to the processor that Cross Device Boundaries

The processor does not support transactions that cross device boundaries. This should never occur because PCI Express transactions are not allowed to cross a 4 KB boundary. For reads, the processor will provide separate completion status for each naturally-aligned 64 byte block or, if chaining is enabled, each 128 byte block. If the starting address of a transaction hits a valid address, the portion of a request that hits that target device (PCI Express or DRAM) will complete normally.

If the starting transaction address hits an invalid address, the entire transaction will be remapped to address 000C_0000h and dispatched to DRAM. A single unsupported request completion will result.

2.3.13.1.1 TC/VC Mapping Details

1. VC0 (enabled by default)

- a. Snoop port and Non-snoop Asynchronous transactions are supported.
- b. Internal Graphics GMADR writes can occur. These will NOT be snooped regardless of the snoop not required (SNR) bit.
- c. Internal Graphics GMADR reads (unsupported).
- d. Peer writes can occur. The SNR bit is ignored.
- e. MSI can occur. These will route and be sent to the cores as Intlogical/IntPhysical interrupts regardless of the SNR bit.
- f. VLW messages can occur. These will route and be sent to the cores as VLW messages regardless of the SNR bit.
- g. MCTP messages can occur. These are routed in a peer fashion.
- 2. VCp (Optionally enabled)
 - a. Supports priority snoop traffic only. This VC is given higher priority at the snoop VC arbiter. Routed as an independent virtual channel and treated independently within the Cache module. VCp snoops are indicated as "high priority" in the snoop priority field. USB classic and USB2 traffic are expected to use this channel.

Note: On prior chipsets, this was termed "snoop isochronous" traffic. "Snoop isochronous" is now termed "priority snoop" traffic.

- b. SNR bit is ignored.
- c. MSI on VCP is supported.
- d. Peer read and write requests are not supported. Writes will route to address 000C_0000h with byte enables deasserted, while reads will route to address 000C_0000h and an unsupported request completion.
- e. Internal Graphics GMADR writes are NOT supported. These will route to address 000C_0000h with byte enables de-asserted.
- f. Internal Graphics GMADR reads are not supported.
- g. See DMI2 TC mapping for expected TC to VCp mapping. This has changed from DMI to DMI2.
- 3. VC1 (Optionally enabled)
 - a. Supports non-snoop transactions only. (Used for isochronous traffic). The PCI Express Egress port (PXPEPBAR) must also be programmed appropriately.
 - b. The snoop not required (SNR) bit must be set. Any transaction with the SNR bit not set will be treated as an unsupported request.
 - c. MSI and peer transactions will be treated as unsupported requests.
 - d. No "pacer" arbitration or TWRR arbitration will occur. Never remaps to a different port. (PCH takes care of Egress port remapping). The PCH will meter TCm Intel ME accesses and Intel High Definition Audio TC1 access bandwidth.

- e. Internal Graphics GMADR writes and GMADR reads are not supported.
- 4. VCm accesses
 - a. See DMI2 specification for TC mapping to VCm. VCm access only map to Intel ME stolen DRAM. These transactions carry the direct physical DRAM address (no redirection or remapping of any kind will occur). This is how the PCH Intel Management Engine accesses its dedicated DRAM stolen space.
 - b. DMI block will decode these transactions to ensure only Intel ME stolen memory is targeted, and abort otherwise.
 - c. VCm transactions will only route non-snoop.
 - d. VCm transactions will not go through VTd remap tables.
 - e. The remapbase/remaplimit registers to not apply to VCm transactions.

Figure 2-7. Example: DMI Upstream VC0 Memory Map

2.3.13.2 PCI Express* Interface Decode Rules

All <code>`SNOOP</code> semantic" PCI Express transactions are kept coherent with processor caches.

All "Snoop not required semantic" cycles must reference the direct DRAM address range. PCI Express non-snoop initiated cycles are not snooped.

If a "Snoop not required semantic" cycle is outside of the address range mapped to system memory, then it will proceed as follows:

- Reads: Sent to DRAM address 000C_0000h (non-snooped) and will return "unsuccessful completion".
- Writes: Sent to DRAM address 000C_0000h (non-snooped) with byte enables all disabled Peer writes from PEG to DMI are not supported.

If PEG bus master enable is not set, all reads and writes are treated as unsupported requests.

2.3.13.2.1 TC/VC Mapping Details

- 1. VC0 (enabled by default)
 - a. Snoop port and Non-snoop Asynchronous transactions are supported.
 - b. Internal Graphics GMADR writes can occur. These will NOT be snooped regardless of the snoop not required (SNR) bit.
 - c. Internal Graphics GMADR reads (unsupported).
 - d. Peer writes are only supported between PEG ports. PEG to DMI peer write accesses are NOT supported.
 - e. MSI can occur. These will route to the cores (IntLogical/IntPhysical) regardless of the SNR bit.
- 2. VC1 is not supported
- 3. VCm is not supported

Figure 2-8. PEG Upstream VC0 Memory Map

2.3.13.3 Legacy VGA and I/O Range Decode Rules

The legacy 128 KB VGA memory range 000A_0000h-000B_FFFFh can be mapped to IGD (Device 2), PCI Express (Device 1 Functions or Device 6), and/or to the DMI Interface depending on the programming of the VGA steering bits. Priority for VGA mapping is constant in that the processor always decodes internally mapped devices first. Internal to the processor, decode precedence is always given to IGD. The processor always positively decodes internally mapped devices, namely the IGD. Subsequent decoding of regions mapped to either PCI Express port or the DMI Interface depends on the Legacy VGA configurations bits (VGA Enable & MDAP).

For the remainder of this section, PCI Express can refer to either the Device 1 port functions or the Device 6 port.

VGA range accesses will always be mapped as UC type memory.

Accesses to the VGA memory range are directed to IGD depend on the configuration. The configuration is specified by:

- Internal Graphics Controller in Device 2 is enabled (DEVEN.D2EN bit 4)
- Internal Graphics VGA in Device 0 Function 0 is enabled through register GGC bit 1.
- IGD Memory accesses (PCICMD2 04 05h, MAE bit 1) in Device 2 configuration space are enabled.
- VGA Compatibility Memory accesses (VGA Miscellaneous output Register MSR Register, bit 1) are enabled.
- Software sets the proper value for VGA Memory Map Mode Register (VGA GR06 Register, bits 3:2). See Table 2-5 for translations.

Table 2-5. IGD Frame Buffer Accesses

Mem Access→ GR06(3:2)	A0000h-AFFFh	B0000h–B7FFFh MDA	B8000h-BFFFFh
00	IGD	IGD	IGD
01	IGD	PCI Express Bridge or DMI Interface	PCI Express Bridge or DMI Interface
10	PCI Express Bridge or DMI Interface	IGD	PCI Express Bridge or DMI Interface
11	PCI Express Bridge or DMI Interface	PCI Express Bridge or DMI Interface	IGD

Note: Additional qualification within IGD comprehends internal MDA support. The VGA and MDA enabling bits detailed below control segments not mapped to IGD.

VGA I/O range is defined as addresses where A[15:0] are in the ranges 03B0h to 03BBh, and 03C0h to 03DFh. VGA I/O accesses directed to IGD depends on the following configuration:

- Internal Graphics Controller in Device 2 is enabled through register DEVEN.D2EN bit 4.
- Internal Graphics VGA in Device 0 function 0 is enabled through register GGC bit 1.
- IGD I/O accesses (PCICMD2 04 05h, IOAE bit 0) in Device 2 are enabled.
- VGA I/O decodes for IGD uses 16 address bits (15:0) there is no aliasing. This is different when compared to a bridge device (Device 1) that used only 10 address bits (A 9:0) for VGA I/O decode.
- VGA I/O input/output address select (VGA Miscellaneous output Register MSR Register, bit 0) used to select mapping of I/O access as defined in Table 2-6.

Table 2-6.IGD VGA I/O Mapping

I/O Access → MSRb0	3CXh	3DXh	3B0h–3BBh	3BCh-3BFh
0	IGD	PCI Express Bridge or DMI Interface	IGD	PCI Express Bridge or DMI Interface
1	IGD	IGD	PCI Express Bridge or DMI Interface	PCI Express Bridge or DMI Interface

Note: Additional qualification within IGD comprehends internal MDA support. The VGA and MDA enabling bits detailed below control ranges not mapped to IGD.

For regions mapped outside of the IGD (or if IGD is disabled), the legacy VGA memory range A0000h–BFFFFh are mapped either to the DMI Interface or PCI Express depending on the programming of the VGA Enable bit in the BCTRL configuration register in the PEG configuration space, and the MDAPxx bits in the Legacy Access Control (LAC) register in Device 0 configuration space. The same register controls mapping VGA I/O address ranges. VGA I/O range is defined as addresses where A[9:0] are in the ranges 3B0h to 3BBh and 3C0h to 3DFh (inclusive of ISA address aliases – A[15:10] are not decoded). The function and interaction of these two bits is described below:

VGA Enable: Controls the routing of processor initiated transactions targeting VGA compatible I/O and memory address ranges. When this bit is set, the following processor accesses will be forwarded to the PCI Express:

- memory accesses in the range 0A0000h to 0BFFFFh
- I/O addresses where A[9:0] are in the ranges 3B0h to 3BBh and 3C0h to 3DFh (including ISA address aliases A[15:10] are not decoded)

When this bit is set to a "1":

- Forwarding of these accesses issued by the processor is independent of the I/O address and memory address ranges defined by the previously defined base and limit registers.
- Forwarding of these accesses is also independent of the settings of the ISA Enable settings if this bit is "1".
- Accesses to I/O address range x3BCh-x3BFh are forwarded to DMI Interface.

When this bit is set to a "0":

- Accesses to I/O address range x3BCh-x3BFh are treated just like any other I/O accesses that is, the cycles are forwarded to PCI Express if the address is within IOBASE and IOLIMIT and ISA enable bit is not set; otherwise, they are forwarded to DMI Interface.
- VGA compatible memory and I/O range accesses are not forwarded to PCI Express but rather they are mapped to DMI Interface unless they are mapped to PCI Express using I/O and memory range registers defined above (IOBASE, IOLIMIT)

Table 2-7 shows the behavior for all combinations of MDA and VGA.

Table 2-7. VGA and MDA I/O Transaction Mapping

VGA_en	MDAP	Range	Destination	Exceptions/Notes
0	0	VGA, MDA	DMI Interface	
0	1	Illegal		Undefined behavior results
1	0	VGA	PCI Express	
1	1	VGA	PCI Express	
1	1	MDA	DMI Interface	Note: x3BCh-x3BEh will also go to DMI Interface

The same registers control mapping of VGA I/O address ranges. VGA I/O range is defined as addresses where A[9:0] are in the ranges 3B0h to 3BBh and 3C0h to 3DFh (inclusive of ISA address aliases – A[15:10] are not decoded). The function and interaction of these two bits is described below.

MDA Present (MDAP): This bit works with the VGA Enable bit in the BCTRL register of Device 1 to control the routing of processor initiated transactions targeting MDA compatible I/O and memory address ranges. This bit should not be set when the VGA Enable bit is not set. If the VGA enable bit is set, accesses to I/O address range x3BCh-x3BFh are forwarded to DMI Interface. If the VGA enable bit is not set, accesses to I/O address range x3BCh-x3BFh are forwarded to PCI Express if the address is within IOBASE and IOLIMIT and ISA enable bit is not set; otherwise, they are forwarded to DMI Interface. MDA resources are defined as the following:

Memory: 0B0000h-0B7FFh

I/O: 3B4h, 3B5h, 3B8h, 3B9h, 3BAh, 3BFh, (Including ISA address aliases, A[15:10] are not used in decode)

Any I/O reference that includes the I/O locations listed above, or their aliases, will be forwarded to DMI Interface even if the reference includes I/O locations not listed above.

For I/O reads which are split into multiple DWord accesses, this decode applies to each DWord independently. For example, a read to x3B3 and x3B4 (quadword read to x3B0 with BE#=E7h) will result in a DWord read from PEG at 3B0 (BE#=Eh), and a DWord read from DMI at 3B4 (BE=7h). Since the processor will not issue I/O writes crossing the DWord boundary, this special case does not exist for writes.

Summary of decode priority:

- Internal Graphics VGA, if enabled, gets: 03C0h-03CFh: always 03B0h-03BBh: if MSR[0]=0 (MSR is I/O register 03C2) 03D0h-03DFh: if MSR[0]=1 Note: 03BCh-03BFh never decodes to IGD; 3BCh-3BEh are parallel port I/Os, and 3BF is only used by true MDA devices, apparently.
- Else, If MDA Present (if VGA on PEG is enabled), DMI gets: x3B4,5,8,9,A,F (any access with any of these bytes enabled, regardless of the other BEs)
- Else, If VGA on PEG is enabled, PEG gets: x3B0h-x3BBh x3C0h-x3CFh x3D0h-x3DFh
- Else, if ISA Enable=1, DMI gets: upper 768 bytes of each 1K block
- 5. Else, IOBASE/IOLIMIT apply

2.4 I/O Mapped Registers

The processor contains two registers that reside in the processor I/O address space – the Configuration Address (CONFIG_ADDRESS) Register and the Configuration Data (CONFIG_DATA) Register. The Configuration Address Register enables/disables the configuration space and determines what portion of configuration space is visible through the Configuration Data window.

2.5 PCI Device 0 Function 0 Configuration Space Registers

Table 2-8.PCI Device 0, Function 0 Configuration Space Register Address Map (Sheet 1
of 2)

Address Offset	Register Symbol	Register Name	Reset Value	Access
0-1h	VID	Vendor Identification	8086h	RO
2-3h	DID	Device Identification	0150h	RO-FW, RO-V
4-5h	PCICMD	PCI Command	0006h	RO, RW
6-7h	PCISTS	PCI Status	0090h	RW1C, RO
8h	RID	Revision Identification	00h	RO-FW
9–Bh	CC	Class Code	060000h	RO
C-Dh	RSVD	Reserved	0h	RO
Eh	HDR	Header Type	00h	RO
F-2Bh	RSVD	Reserved	0h	RO
2C-2Dh	SVID	Subsystem Vendor Identification	0000h	RW-O
2E-2Fh	SID	Subsystem Identification	0000h	RW-O
30-33h	RSVD	Reserved	0h	RO
34h	CAPPTR	Capabilities Pointer	E0h	RO
35-3Fh	RSVD	Reserved	0h	RO
40-47h	PXPEPBAR	PCI Express Egress Port Base Address	0000000000 00000h	RW
48-4Fh	MCHBAR	Host Memory Mapped Register Range Base	00000000000 00000h	RW
50-51h	GGC	GMCH Graphics Control Register	0028h	RW-L, RW-KL
52-53h	RSVD	Reserved	0h	RO
54-57h	DEVEN	Device Enable	0000209Fh	RW-L, RO, RW
58-5Bh	PAVPC	Protected Audio Video Path Control	00000000h	RW-L, RW-KL
5C-5Fh	DPR	DMA Protected Range	00000000h	RW-L, RO-V, RW-KL
60-67h	PCIEXBAR	PCI Express Register Range Base Address	0000000000 00000h	RW, RW-V
68-6Fh	DMIBAR	Root Complex Register Range Base Address	0000000000 00000h	RW
70-77h	MESEG_BASE	Intel Management Engine Base Address Register	0000007FFFF0 0000h	RW-L
78-7Fh	MESEG_MASK	Intel Management Engine Limit Address Register	00000000000 00000h	RW-L, RW-KL
80h	PAM0	Programmable Attribute Map 0	00h	RW
81h	PAM1	Programmable Attribute Map 1	00h	RW
82h	PAM2	Programmable Attribute Map 2	00h	RW
83h	PAM3	Programmable Attribute Map 3	00h	RW
84h	PAM4	Programmable Attribute Map 4	00h	RW
85h	PAM5	Programmable Attribute Map 5	00h	RW
86h	PAM6	Programmable Attribute Map 6	00h	RW
87h	LAC	Legacy Access Control	00h	RW
88h	RSVD	Reserved	02h	RW-LV, RW-L, RW-KL, RO

 Table 2-8.
 PCI Device 0, Function 0 Configuration Space Register Address Map (Sheet 2 of 2)

Address	Desister			
Offset	Symbol	Register Name	Reset Value	Access
89-8Fh	RSVD	Reserved	0h	RO
90-97h	REMAPBASE	Remap Base Address Register	0000000FFFF0 0000h	RW-L, RW-KL
98-9Fh	REMAPLIMIT	Remap Limit Address Register	00000000000 00000h	RW-L, RW-KL
A0-A7h	ТОМ	Top of Memory	0000007FFF0 0000h	RW-L, RW-KL
A8-AFh	TOUUD	Top of Upper Usable DRAM	00000000000 00000h	RW-KL, RW-L
B0-B3h	BDSM	Base Data of Stolen Memory	00000000h	RW-KL, RW-L
B4-B7h	BGSM	Base of GTT stolen Memory	00100000h	RW-L, RW-KL
B8-BBh	TSEGMB	TSEG Memory Base	00000000h	RW-L, RW-KL
BC-BFh	TOLUD	Top of Low Usable DRAM	00100000h	RW-KL, RW-L
C0-DBh	RSVD	Reserved	0h	RO
DC-DFh	SKPD	Scratchpad Data	00000000h	RW
E0-E3h	RSVD	Reserved	0h	RO
E4-E7h	CAPID0_A	Capabilities A	00000000h	RO-FW, RO-KFW
E8-EBh	CAPID0_B	Capabilities B	00000000h	RO-FW, RO-KFW
C8-C9h	ERRSTS	Error Status	0000h	RW1CS
CA-CBh	ERRCMD	Error Command	0000h	RW
CC-CDh	SMICMD	SMI Command	0000h	RW
CE-CFh	SCICMD	SCI Command	0000h	RW

2.5.1 VID—Vendor Identification Register

This register combined with the Device Identification register uniquely identifies any PCI device.

B/D/F/ Address Reset Va Access: Size:	Type: Offset: alue:	0/0/0/PCI 0-1h 8086h RO 16 bits		
Bit	Access	Reset Value	RST/ PWR	Description
15:0	RO	8086h	Uncore	Vendor Identification Number (VID) PCI standard identification for Intel.

2.5.2 DID—Device Identification Register

This register combined with the Vendor Identification register uniquely identifies any PCI device.

B/D/F/ Address Reset V Access: Size:	3/D/F/Type:0/0/0/PCIAddress Offset:2-3hReset Value:0150hAccess:RO-FW, RO-VSize:16 bits		0/0/PCI 3h 50h -FW, RO-V bits	,
Bit	Access	Reset Value	RST/ PWR	Description
15:4	RO-FW	015h	Uncore	Device Identification Number MSB (DID_MSB) This is the upper part of device identification assigned to the processor.
3:2	RO-V	00b	Uncore	Device Identification Number SKU (DID_SKU) This is the middle part of device identification assigned to the processor.
1:0	RO-FW	00b	Uncore	Device Identification Number LSB (DID_LSB) This is the lower part of device identification assigned to the processor.

2.5.3 PCICMD—PCI Command Register

Since Device 0 does not physically reside on PCI_A many of the bits are not implemented.

B/D/F/ Address Reset V Access: Size: BIOS O	Type: 5 Offset: alue: ptimal De	0/ 4- 00 RC 16 fault 00	0/0/PCI 5h 06h 9, RW bits h	
Bit	Access	Reset Value	RST/ PWR	Description
15:10	RO	0h		Reserved (RSVD)
9	RO	0b	Uncore	Fast Back-to-Back Enable (FB2B) This bit controls whether or not the master can do fast back-to- back write. Since Device 0 is strictly a target this bit is not implemented and is hardwired to 0. Writes to this bit position have no effect.
8	RW	ОЬ	Uncore	 SERR Enable (SERRE) This bit is a global enable bit for Device 0 SERR messaging. The processor communicates the SERR condition by sending an SERR message over DMI to the PCH. 1 = The processor is enabled to generate SERR messages over DMI for specific Device 0 error conditions that are individually enabled in the ERRCMD and DMIUEMSK registers. The error status is reported in the ERRSTS, PCISTS, and DMIUEST registers. 0 = The SERR message is not generated by the Host for Device 0. This bit only controls SERR messaging for Device 0. Other integrated devices have their own SERRE bits to control error reporting for error conditions occurring in each device. The control bits are used in a logical OR manner to enable the SERR DMI message mechanism. 0 = Device 0 SERR disabled 1 = Device 0 SERR enabled

B/D/F/ Address Reset V Access: Size: BIOS Op	Type: offset: alue: otimal De	0/ 4- 00 RC 16 fault 00	0/0/PCI 5h 06h 0, RW bits h	
Bit	Access	Reset Value	RST/ PWR	Description
				Address/Data Stepping Enable (ADSTEP)
7	RO	0b	Uncore	Address/data stepping is not implemented in the processor, and this bit is hardwired to 0. Writes to this bit position have no effect.
				Parity Error Enable (PERRE)
				This bit controls whether or not the Master Data Parity Error bit in the PCI Status register can bet set.
6	RW	0b	Uncore	0 = Master Data Parity Error bit in PCI Status register can NOT be set.
				1 = Master Data Parity Error bit in PCI Status register CAN be set.
				VGA Palette Snoop Enable (VGASNOOP)
5	RO	0b	Uncore	The processor does not implement this bit and it is hardwired to a 0. Writes to this bit position have no effect.
				Memory Write and Invalidate Enable (MWIE)
4	RO	0b	Uncore	The processor will never issue memory write and invalidate commands. This bit is therefore hardwired to 0. Writes to this bit position will have no effect.
3	RO	0h		Reserved (RSVD)
				Bus Master Enable (BME)
2	RO	1b	Uncore	The processor is always enabled as a master on the backbone. This bit is hardwired to a 1. Writes to this bit position have no effect.
				Memory Access Enable (MAE)
1	RO	1b	Uncore	The processor always allows access to main memory, except when such access would violate security principles. Such exceptions are outside the scope of PCI control. This bit is not implemented and is hardwired to 1. Writes to this bit position have no effect.
0	RO	0b	Uncore	I/O Access Enable (IOAE) This bit is not implemented in the processor and is hardwired to a 0. Writes to this bit position have no effect.

2.5.4 PCISTS—PCI Status Register

This status register reports the occurrence of error events on Device 0's PCI interface. Since Device 0 does not physically reside on PCI_A many of the bits are not implemented.

B/D/F/Type:0/0/0/PCIAddress Offset:6-7hReset Value:0090hAccess:RW1C, ROSize:16 bitsBIOS Optimal Default00h			0/0/PCI 7h 990h V1C, RO 5 bits 9h	
Bit	Access	Reset Value	RST/ PWR	Description
15	RW1C	0b	Uncore	Detected Parity Error (DPE) This bit is set when this Device receives a Poisoned TLP.

B/D/F/ Address Reset V Access: Size: BIOS Op	Type: Offset: alue: otimal De	0/ 6- 00 RV 16 fault 00	0/0/PCI 7h 90h V1C, RO 5 bits	
Bit	Access	Reset Value	RST/ PWR	Description
14	RW1C	Ob	Uncore	Signaled System Error (SSE) This bit is set to 1 when Device 0 generates an SERR message over DMI for any enabled Device 0 error condition. Device 0 error conditions are enabled in the PCICMD, ERRCMD, and DMIUEMSK registers. Device 0 error flags are read/reset from the PCISTS, ERRSTS, or DMIUEST registers. Software clears this bit by writing a 1 to it.
13	RW1C	0b	Uncore	Received Master Abort Status (RMAS) This bit is set when the processor generates a DMI request that receives an Unsupported Request completion packet. Software clears this bit by writing a 1 to it.
12	RW1C	0b	Uncore	Received Target Abort Status (RTAS) This bit is set when the processor generates a DMI request that receives a Completer Abort completion packet. Software clears this bit by writing a 1 to it.
11	RO	0b	Uncore	Signaled Target Abort Status (STAS) The processor will not generate a Target Abort DMI completion packet or Special Cycle. This bit is not implemented and is hardwired to a 0. Writes to this bit position have no effect.
10:9	RO	00b	Uncore	DEVSEL Timing (DEVT) These bits are hardwired to 00. Writes to these bit positions have no effect. Device 0 does not physically connect to PCI_A. These bits are set to 00 (fast decode) so that optimum DEVSEL timing for PCI_A is not limited by the Host.
8	RW1C	0b	Uncore	Master Data Parity Error Detected (DPD) This bit is set when DMI received a Poisoned completion from PCH. This bit can only be set when the Parity Error Enable bit in the PCI Command register is set.
7	RO	1b	Uncore	Fast Back-to-Back (FB2B) This bit is hardwired to 1. Writes to these bit positions have no effect. Device 0 does not physically connect to PCI_A. This bit is set to 1 (indicating fast back-to-back capability) so that the optimum setting for PCI_A is not limited by the Host.
6	RO	0h		Reserved (RSVD)
5	RO	0b	Uncore	66 MHz Capable (MC66) Does not apply to PCI Express. Must be hardwired to 0.
4	RO	1b	Uncore	Capability List (CLIST) This bit is hardwired to 1 to indicate to the configuration software that this device/function implements a list of new capabilities. A list of new capabilities is accessed using register CAPPTR at configuration address offset 34h. Register CAPPTR contains an offset pointing to the start address within configuration space of this device where the Capability Identification register resides.
3:0	RO	0h		Reserved (RSVD)

2.5.5 **RID**—Revision Identification Register

This register contains the revision number of Device 0. These bits are read only and writes to this register have no effect.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/0/0/PCI 8h 00h RO-FW 8 bits		
Bit	Access	Reset Value	RST/ PWR	Description
7:0	RO-FW	0h	Uncore	Revision Identification Number (RID) Refer to the <i>Desktop 3rd Generation Intel</i> [®] <i>Core</i> [™] <i>Processor</i> <i>Family Specification Update</i> for the value of the RID register.

2.5.6 CC-Class Code Register

This register identifies the basic function of the device, a more specific sub-class, and a register-specific programming interface.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/0/0/PCI 9-Bh 060000h RO 24 bits		
Bit	Access	Reset Value	RST/ PWR	Description
23:16	RO	06h	Uncore	Base Class Code (BCC) This is an 8-bit value that indicates the base class code for the Host Bridge device. This code has the value 06h, indicating a Bridge device.
15:8	RO	00h	Uncore	Sub-Class Code (SUBCC) This is an 8-bit value that indicates the category of Bridge into which the Host Bridge device falls. The code is 00h indicating a Host Bridge.
7:0	RO	00h	Uncore	Programming Interface (PI) This is an 8-bit value that indicates the programming interface of this device. This value does not specify a particular register set layout and provides no practical use for this device.

2.5.7 HDR—Header Type Register

This register identifies the header layout of the configuration space. No physical register exists at this location.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/0/0/PCI Eh 00h RO 8 bits		
Bit	Access	Reset Value	RST/ PWR	Description
7:0	RO	00h	Uncore	PCI Header (HDR) This field always returns 0 to indicate that the Host Bridge is a single function device with standard header layout. Reads and writes to this location have no effect.

2.5.8 SVID—Subsystem Vendor Identification Register

This value is used to identify the vendor of the subsystem.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/0/0/PCI 2C-2Dh 0000h RW-0 16 bits		
Bit	Access	Reset Value	RST/ PWR	Description
15:0	RW-O	0000h	Uncore	Subsystem Vendor ID (SUBVID) This field should be programmed during boot-up to indicate the vendor of the system board. After it has been written once, it becomes read only.

2.5.9 SID-Subsystem Identification Register

This value is used to identify a particular subsystem.

B/D/F/Type:0/0/0/PCIAddress Offset:2E-2FhReset Value:0000hAccess:RW-0Size:16 bits		0/0/PCI -2Fh 00h /-0 bits		
Bit	Access	Reset Value	RST/ PWR	Description
15:0	RW-O	0000h	Uncore	Subsystem ID (SUBID) This field should be programmed during BIOS initialization. After it has been written once, it becomes read only.

2.5.10 CAPPTR—Capabilities Pointer Register

The CAPPTR provides the offset that is the pointer to the location of the first device capability in the capability list.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/0/0/PCI 34h E0h RO 8 bits		
Bit	Access	Reset Value	RST/ PWR	Description
7:0	RO	E0h	Uncore	Capabilities Pointer (CAPPTR) Pointer to the offset of the first capability ID register block. In this case the first capability is the product-specific Capability Identifier (CAPID0).

2.5.11 PXPEPBAR—PCI Express* Egress Port Base Address Register

This is the base address for the PCI Express Egress Port MMIO Configuration space. There is no physical memory within this 4 KB window that can be addressed. The 4 KB reserved by this register does not alias to any PCI 2.3 compliant memory mapped space. On reset, the EGRESS port MMIO configuration space is disabled and must be enabled by writing a 1 to PXPEPBAREN [Device 0, offset 40h, bit 0].

All the bits in this register are locked in Intel TXT mode.

B/D/F/Type: 0/0/0/PCI Address Offset: 40-47h Reset Value: 0000000000 Access: RW Size: 64 bits BIOS Optimal Default 000000000h		0/0/PCI -47h 0000000000 bits 0000000h	100000h	
Bit	Access	Reset Value	RST/ PWR	Description
63:39	RO	0h		Reserved (RSVD)
38:12	RW	0000000h	Uncore	PCI Express Egress Port MMIO Base Address (PXPEPBAR) This field corresponds to bits 38:12 of the base address PCI Express Egress Port MMIO configuration space. BIOS will program this register resulting in a base address for a 4 KB block of contiguous memory address space. This register ensures that a naturally aligned 4 KB space is allocated within the first 512 GB of addressable memory space. System software uses this base address to program the PCI Express Egress Port MMIO register set. All the bits in this register are locked in Intel TXT mode.
11:1	RO	0h		Reserved (RSVD)
0	RW	0b	Uncore	 PXPEPBAR Enable (PXPEPBAREN): 0 = Disable. PXPEPBAR is disabled and does not claim any memory 1 = Enable. PXPEPBAR memory mapped accesses are claimed and decoded appropriately This register is locked by Intel TXT.

2.5.12 MCHBAR—Host Memory Mapped Register Range Base Register

This is the base address for the Host Memory Mapped Configuration space. There is no physical memory within this 32 KB window that can be addressed. The 32 KB reserved by this register does not alias to any PCI 2.3 compliant memory mapped space. On reset, the Host MMIO Memory Mapped Configuration space is disabled and must be enabled by writing a 1 to MCHBAREN [Device 0, offset 48h, bit 0].

All the bits in this register are locked in Intel TXT mode.

The register space contains memory control, initialization, timing, and buffer strength registers; clocking registers; and power and thermal management registers.

B/D/F/ Address Reset V Access: Size: BIOS Op	Type: offset: alue: otimal De	0/0 48- 000 RW 64 fault 000)/0/PCI -4Fh 0000000000 bits 00000000h	00000h
Bit	Access	Reset Value	RST/ PWR	Description
63:39	RO	0h		Reserved (RSVD)
38:15	RW	000000h	Uncore	Host Memory Mapped Base Address (MCHBAR) This field corresponds to bits 38:15 of the base address Host Memory Mapped configuration space. BIOS will program this register resulting in a base address for a 32 KB block of contiguous memory address space. This register ensures that a naturally aligned 32 KB space is allocated within the first 512 GB of addressable memory space. System software uses this base address to program the Host Memory Mapped register set. All the bits in this register are locked in Intel TXT mode.
14:1	RO	0h		Reserved (RSVD)
0	RW	0b	Uncore	 MCHBAR Enable (MCHBAREN) 0 = Disable. MCHBAR is disabled and does not claim any memory 1 = Enable. MCHBAR memory mapped accesses are claimed and decoded appropriately This register is locked by Intel TXT.

2.5.13 GGC—GMCH Graphics Control Register

All the bits in this register are Intel TXT lockable.

B/D/F/Type:0/0/0/PCIAddress Offset:50-51hReset Value:0028hAccess:RW-L, RW-KLSize:16 bitsBIOS Optimal Default00h)/0/PCI -51h 28h -L, RW-KL bits 1	
Bit	Access	Reset Value	RST/ PWR	Description
15	RO	0h		Reserved (RSVD)
14	RW-L	0b	Uncore	Reserved (RSVD)
13:10	RO	0h		Reserved (RSVD)

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/0 50- 002 RW 16 fault 00f	0/0/PCI -51h 28h '-L, RW-KL bits 1	
Bit	Access	Reset Value	RST/ PWR	Description
9:8	RW-L	Oh	Uncore	GTT Graphics Memory Size (GGMS) This field is used to select the amount of Main Memory that is pre-allocated to support the Internal Graphics Translation Table. The BIOS ensures that memory is pre-allocated only when Internal graphics is enabled. GSM is assumed to be a contiguous physical DRAM space with DSM, and BIOS needs to allocate a contiguous memory chunk. Hardware will derive the base of GSM from DSM only using the GSM size programmed in the register. Hardware functionality in case of programming this value to Reserved is not ensured. Oh = No Preallocated Memory 1h = 1 MB of Preallocated Memory 2h = 2 MB of Preallocated Memory 3h = Reserved
7:3	RW-L	05h	Uncore	Graphics Mode Select (GMS) This field is used to select the amount of Main Memory that is pre-allocated to support the Internal Graphics device in VGA (non-linear) and Native (linear) modes. The BIOS ensures that memory is pre-allocated only when Internal graphics is enabled. This register is also Intel TXT lockable. Hardware does not clear or set any of these bits automatically based on IGD being disabled/enabled. BIOS Requirement: BIOS must not set this field to 0h if IVD (bit 1 of this register) is 0. Note: It is recommended that the 1 GB pre-allocated memory option be used for systems with at least 2 GB physical DRAM. Encodings are as follows: Oh = 0 MB 1h = 32 MB 2h = 64 MB 3h = 96 MB 4h = 128 MB 5h = 160 MB 6h = 192 MB 7h = 224 MB 8h = 256 MB 9h = 288 MB Ah = 352 MB Ch = 384 MB Dh = 416 MB Eh = 448 MB Fh = 448 MB Fh = 448 MB Fh = 448 MB Fh = 1 GB Other = Reserved

B/D/F/Type:0/0/0/PCAddress Offset:50-51hReset Value:0028hAccess:RW-L, RWSize:16 bitsBIOS Optimal Default00h		0/0/PCI -51h 28h -L, RW-KL bits 1		
Bit	Access	Reset Value	RST/ PWR	Description
2	RO	0h		Reserved (RSVD)
1	RW-L	ОЬ	Uncore	 IGD VGA Disable (IVD) 0 = Enable. Device 2 (IGD) claims VGA memory and I/O cycles, the Sub-Class Code within Device 2 Class Code register is 00. 1 = Disable. Device 2 (IGD) does not claim VGA cycles (Memory and I/O), and the Sub- Class Code field within Device 2 Function 0 Class Code register is 80. BIOS Requirement: BIOS must not set this bit to 0 if the GMS field (bits 7:3 of this register) pre-allocates no memory. This bit MUST be set to 1 if Device 2 is disabled either using a fuse or fuse override (CAPID0_A[IGD] = 1) or using a register (DEVEN[3] = 0). This register is locked by Intel TXT lock. 0 = Enable 1 = Disable
0	RW-KL	0b	Uncore	GGC Lock (GGCLCK) When set to 1b, this bit will lock all bits in this register.

2.5.14 DEVEN—Device Enable Register

This register allows for enabling/disabling of PCI devices and functions that are within the processor package. The following table bit definitions describe the behavior of all combinations of transactions to devices controlled by this register.

All the bits in this register are Intel TXT Lockable.

B/D/F/Type:0/Address Offset:54Reset Value:00Access:RVSize:32BIOS Optimal Default00		0/0 54- 000 RW 32 fault 000)/0/PCI -57h 0209Fh -L, RO, RW bits 0000h	,
Bit	Access	Reset Value	RST/ PWR	Description
31:15	RO	0h		Reserved (RSVD)
14	RW	Ob	Uncore	Chap Enable (D7EN) 0 = Bus 0 Device 7 is disabled and not visible. 1 = Bus 0 Device 7 is enabled and visible. Non-production BIOS code should provide a setup option to enable Bus 0 Device 7. When enabled, Bus 0 Device 7 must be initialized in accordance to standard PCI device initialization procedures.
13	RW-L	1b	Uncore	 PEG60 Enable (D6F0EN) 0 = Bus 0 Device 6 Function 0 is disabled and hidden. 1 = Bus 0 Device 6 Function 0 is enabled and visible. This bit will be set to 0b and remain 0b if PEG60 capability is disabled.
12:8	RO	0h		Reserved (RSVD)

B/D/F/Type:0/0/0/FAddress Offset:54-57hReset Value:0000209Access:RW-L, RSize:32 bitsBIOS Optimal Default000000		0/0/PCI -57h 00209Fh -L, RO, RW bits 0000h	,	
Bit	Access	Reset Value	RST/ PWR	Description
7	RW-L	1b	Uncore	 Device 4 Enable (D4EN) 0 = Bus 0 Device 4 is disabled and not visible. 1 = Bus 0 Device 4 is enabled and visible. This bit will be set to 0b and remain 0b if Device 4 capability is disabled.
6:5	RO	0h		Reserved (RSVD)
4	RW-L	1b	Uncore	Internal Graphics Engine (D2EN) 0 = Bus 0 Device 2 is disabled and hidden 1 = Bus 0 Device 2 is enabled and visible This bit will be set to 0b and remain 0b if Device 2 capability is disabled.
3	RW-L	1b	Uncore	 PEG10 Enable (D1F0EN) 0 = Bus 0 Device 1 Function 0 is disabled and hidden. 1 = Bus 0 Device 1 Function 0 is enabled and visible. This bit will be set to 0b and remain 0b if PEG10 capability is disabled.
2	RW-L	1b	Uncore	 PEG11 Enable (D1F1EN) 0 = Bus 0 Device 1 Function 1 is disabled and hidden. 1 = Bus 0 Device 1 Function 1 is enabled and visible. This bit will be set to 0b and remain 0b if: PEG11 capability is disabled by fuses, OR PEG11 is disabled by strap (PEG0CFGSEL)
1	RW-L	1b	Uncore	 PEG12 Enable (D1F2EN) 0 = Bus 0 Device 1 Function 2 is disabled and hidden. 1 = Bus 0 Device 1 Function 2 is enabled and visible. This bit will be set to 0b and remain 0b if: PEG12 capability is disabled by fuses, OR PEG12 is disabled by strap (PEG0CFGSEL)
0	RO	1b	Uncore	Host Bridge (DOEN) Bus 0 Device 0 Function 0 may not be disabled and is therefore hardwired to 1.

2.5.15 PAVPC—Protected Audio Video Path Control Register

All the bits in this register are locked by Intel TXT. When locked, the RW bits are RO.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/0/0/PCI 58-5Bh 00000000h RW-L, RW-KL 32 bits		
Bit	Access	Reset Value	RST/ PWR	Description
31:3	RO	0h		Reserved (RSVD)
2	RW-KL	Оb	Uncore	PAVP Lock (PAVPLCK) This bit will lock all writeable contents in this register when set (including itself). Only a hardware reset can unlock the register again. For the processor, this Lock bit needs to be set only if PAVP is enabled (bit_PAVPE = '1`).
1:0	RO	0h		Reserved (RSVD)

2.5.16 DPR-DMA Protected Range Register

DMA protected range register.

B/D/F/Type:0/0Address Offset:5C-Reset Value:000Access:RWSize:32BIOS Optimal Default000)/0/PCI -5Fh 000000h -L, RO-V, F bits 0h	₹₩-KL	
Bit	Access	Reset Value	RST/ PWR	Description
31:3	RO	0h		Reserved (RSVD)
2	RW-L	Оb	Uncore	 Enable Protected Memory (EPM) This field controls DMA accesses to the DMA Protected Range (DPR) region. 0 = DPR is disabled 1 = DPR is enabled. All DMA requests accessing DPR region are blocked. Hardware reports the status of DPR enable/disable through the PRS field in this register.
1	RO-V	0b	Uncore	<pre>Protected Region Status (PRS) This field indicates the status of DPR. 0 = DPR protection disabled 1 = DPR protection enabled</pre>
0	RO	0h		Reserved (RSVD)

2.5.17 PCIEXBAR—PCI Express* Register Range Base Address Register

This is the base address for the PCI Express configuration space. This window of addresses contains the 4 KB of configuration space for each PCI Express device that can potentially be part of the PCI Express Hierarchy associated with the Uncore. There is no actual physical memory within this window of up to 256 MB that can be addressed. The actual size of this range is determined by a field in this register.

Each PCI Express Hierarchy requires a PCI Express BASE register. The Uncore supports one PCI Express Hierarchy. The region reserved by this register does not alias to any PCI2.3 compliant memory mapped space. For example, the range reserved for MCHBAR is outside of PCIEXBAR space.

On reset, this register is disabled and must be enabled by writing a 1 to the enable field in this register. This base address shall be assigned on a boundary consistent with the number of buses (defined by the length field in this register), above TOLUD and still within 39-bit addressable memory space.

The PCI Express Base Address cannot be less than the maximum address written to the Top of physical memory register (TOLUD). Software must ensure that these ranges do not overlap with known ranges located above TOLUD.

Software must ensure that the sum of the length of the enhanced configuration region + TOLUD + any other known ranges reserved above TOLUD is not greater than the 39bit addessable limit of 512 GB. In general, system implementation and the number of PCI/PCI Express/PCI-X buses supported in the hierarchy will dictate the length of the region.

All the bits in this register are locked in Intel TXT mode.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Det		0/0 60 000 RW 64 fault 000	0/0/PCI -67h 0000000000 I, RW-V bits 0000000000	000000h 00h
Bit	Access	Reset Value	RST/ PWR	Description
63:39	RO	0h		Reserved (RSVD)
38:28	RW	000h	Uncore	PCI Express* Base Address (PCIEXBAR) This field corresponds to bits 38:28 of the base address for PCI Express enhanced configuration space. BIOS will program this register resulting in a base address for a contiguous memory address space. The size of the range is defined by bits 2:1 of this register. This Base address shall be assigned on a boundary consistent with the number of buses (defined by the Length field in this register) above TOLUD and still within the 39-bit addressable memory space. The address bits decoded depend on the length of the region defined by this register. This register is locked by Intel TXT. The address used to access the PCI Express configuration space for a specific device can be determined as follows: PCI Express Base Address + Bus Number * 1MB + Device Number * 32 KB + Function Number * 4 KB This address is the beginning of the 4 KB space that contains both the PCI compatible configuration space and the PCI Express extended configuration space.

B/D/F/Type: 0/0/0/PCI Address Offset: 60-67h Reset Value: 0000000000 Access: RW, RW-V Size: 64 bits BIOS Optimal Default 00000000000			0/0/PCI -67h 000000000 , RW-V bits 000000000	00000h Oh
Bit	Access	Reset Value	RST/ PWR	Description
27	RW-V	0b	Uncore	128 MB Base Address Mask (ADMSK128) This bit is either part of the PCI Express Base Address (RW) or part of the Address Mask (RO, read 0b), depending on the value of bits 2:1 in this register.
26	RW-V	0b	Uncore	64 MB Base Address Mask (ADMSK64) This bit is either part of the PCI Express Base Address (RW) or part of the Address Mask (RO, read 0b), depending on the value of bits 2:1 in this register.
25:3	RO	0h		Reserved (RSVD)
2:1	RW	00b	Uncore	 Length (LENGTH) This field describes the length of this region. 00 = 256 MB (buses 0-255). Bits 38:28 are decoded in the PCI Express Base Address Field. 01 = 128 MB (buses 0-127). Bits 38:27 are decoded in the PCI Express Base Address Field. 10 = 64 MB (buses 0-63). Bits 38:26 are decoded in the PCI Express Base Address Field. 11 = Reserved. This register is locked by Intel TXT.
0	RW	Ob	Uncore	 PCIEXBAR Enable (PCIEXBAREN) 0 = The PCIEXBAR register is disabled. Memory read and write transactions proceed as if there were no PCIEXBAR register. PCIEXBAR bits 38:26 are RW with no functionality behind them. 1 = The PCIEXBAR register is enabled. Memory read and write transactions whose address bits 38:26 match PCIEXBAR will be translated to configuration reads and writes within the Uncore. These Translated cycles are routed as shown in the above table. This register is locked by Intel TXT.

2.5.18 DMIBAR—Root Complex Register Range Base Address Register

This is the base address for the Root Complex configuration space. This window of addresses contains the Root Complex Register set for the PCI Express Hierarchy associated with the Host Bridge. There is no physical memory within this 4 KB window that can be addressed. The 4 KB reserved by this register does not alias to any PCI 2.3 compliant memory mapped space. On reset, the Root Complex configuration space is disabled and must be enabled by writing a 1 to DMIBAREN [Device 0, offset 68h, bit 0]. All the bits in this register are locked in Intel TXT mode.

B/D/F/Type:0/0/0/FAddress Offset:68-6FhReset Value:0000000Access:RWSize:64 bitsBIOS Optimal Default0000000)/0/PCI -6Fh)000000000 bits)000000h	00000h	
Bit	Access	Reset Value	RST/ PWR	Description
63:39	RO	0h		Reserved (RSVD)
38:12	RW	0000000h	Uncore	DMI Base Address (DMIBAR) This field corresponds to bits 38:12 of the base address DMI configuration space. BIOS will program this register resulting in a base address for a 4 KB block of contiguous memory address space. This register ensures that a naturally aligned 4 KB space is allocated within the first 512 GB of addressable memory space. System Software uses this base address to program the DMI register set. All the bits in this register are locked in Intel TXT mode.
11:1	RO	0h		Reserved (RSVD)
0	RW	0b	Uncore	 DMIBAR Enable (DMIBAREN) 0 = Disable. DMIBAR is disabled and does not claim any memory 1 = Enable. DMIBAR memory mapped accesses are claimed and decoded appropriately This register is locked by Intel TXT.

2.5.19 MESEG_BASE—Intel[®] Management Engine Base Address Register

This register determines the Base Address register of the memory range that is preallocated to the Intel Management Engine. Together with the MESEG_MASK register it controls the amount of memory allocated to the ME.

This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory address range will be aligned to a 1 MB boundary.

This register is locked by Intel TXT.

Note: BIOS must program MESEG_BASE and MESEG_MASK so that Intel ME stolen Memory is carved out from TOM.

B/D/F/Type:0/0Address Offset:70-Reset Value:000Access:RWSize:64BIOS Optimal Default000)/0/PCI -77h)00007FFFF(-L bits)000000000	00000h Oh
Bit	Access	Reset Value	RST/ PWR	Description
63:39	RO	0h		Reserved (RSVD)
38:20	RW-L	7FFFFh	Uncore	ME UMA Memory Base Address (MEBASE) This field corresponds to A[38:20] of the base address memory range that is allocated to the ME.
19:0	RO	0h		Reserved (RSVD)

2.5.20 MESEG_MASK—Intel[®] Management Engine Limit Address Register

This register determines the Mask Address register of the memory range that is preallocated to the Intel Management Engine. Together with the MESEG_BASE register it controls the amount of memory allocated to the ME.

This register is locked by Intel TXT.

Note: BIOS must program MESEG_BASE and MESEG_MASK so that Intel ME stolen Memory is carved out from TOM.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/0 78- 000 RW 64 fault 000	0/0/0/PCI 78-7Fh 000000000000000 RW-L, RW-KL 64 bits Ilt 0000000000h		
Bit	Access	Reset Value	RST/ PWR	Description	
63:39	RO	0h		Reserved (RSVD)	
				ME UMA Memory Mask (MEMASK)	
				This field indicates the bits that must match MEBASE in order to qualify as an Intel MEMemory Range access.	
38:20	RW-L	00000h	Uncore	For example, if the field is set to 7FFFFh, then Intel MEMemory is 1 MB in size.	
				Another example is that if the field is set to 7FFFEh, then Intel MEMemory is 2 MB in size.	
				In other words, the size of Intel MEMemory Range is limited to power of 2 times 1 MB.	
19:12	RO	0h		Reserved (RSVD)	
				ME Stolen Memory Enable (ME_STLEN_EN)	
11	RW-L	0b	Uncore	Indicates whether the Intel ME stolen Memory range is enabled or not.	
				ME Range Lock (MELCK)	
10	RW-KL	0b	Uncore	This field indicates whether all bits in the MESEG_BASE and MESEG_MASK registers are locked. When locked, updates to any field for these registers must be dropped.	
9:0	RO	0h		Reserved (RSVD)	

2.5.21 PAM0—Programmable Attribute Map 0 Register

This register controls the read, write and shadowing attributes of the BIOS range from F_0000h to F_FFFFh. The Uncore allows programmable memory attributes on 13 legacy memory segments of various sizes in the 768 KB to 1 MB address range. Seven Programmable Attribute Map (PAM) registers are used to support these features. Cacheability of these areas is controlled using the MTRR register in the core.

Two bits are used to specify memory attributes for each memory segment. These bits apply to host accesses to the PAM areas. These attributes are:

- RE Read Enable. When RE=1, the host read accesses to the corresponding memory segment are claimed by the Uncore and directed to main memory. Conversely, when RE=0, the host read accesses are directed to DMI.
- WE Write Enable. When WE=1, the host write accesses to the corresponding memory segment are claimed by the Uncore and directed to main memory. Conversely, when WE=0, the host read accesses are directed to DMI.

B/D/F/Type:0/0Address Offset:80hReset Value:00hAccess:RWSize:8 biBIOS Optimal Default00h)/0/PCI 1 its		
Bit	Access	Reset Value	RST/ PWR	Description
7:6	RO	0h		Reserved (RSVD)
5:4	RW	00b	Uncore	 OF0000-OFFFFF Attribute (HIENABLE) This field controls the steering of read and write cycles that address the BIOS area from 0F_0000h to 0F_FFFFh. 00 = DRAM Disabled. All accesses are directed to DMI. 01 = Read Only. All reads are sent to DRAM, all writes are forwarded to DMI. 10 = Write Only. All writes are sent to DRAM, all reads are serviced by DMI. 11 = Normal DRAM Operation. All reads and writes are serviced by DRAM. This register is locked by Intel TXT.
3:0	RO	0h		Reserved (RSVD)

2.5.22 PAM1—Programmable Attribute Map 1 Register

This register controls the read, write and shadowing attributes of the BIOS range from C_0000h to C_7FFFh. The Uncore allows programmable memory attributes on 13 legacy memory segments of various sizes in the 768 KB to 1 MB address range. Seven Programmable Attribute Map (PAM) registers are used to support these features. Cacheability of these areas is controlled using the MTRR register in the core.

Two bits are used to specify memory attributes for each memory segment. These bits apply to host accesses to the PAM areas. These attributes are:

- RE Read Enable. When RE=1, the host read accesses to the corresponding memory segment are claimed by the Uncore and directed to main memory. Conversely, when RE=0, the host read accesses are directed to DMI.
- WE Write Enable. When WE=1, the host write accesses to the corresponding memory segment are claimed by the Uncore and directed to main memory. Conversely, when WE=0, the host read accesses are directed to DMI.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal De		0/0/0/PCI 81h 00h RW 8 bits fault 0h		
Bit	Access	Reset Value	RST/ PWR	Description
7:6	RO	0h		Reserved (RSVD)
5:4	RW	00b	Uncore	 OC4000-OC7FFF Attribute (HIENABLE) This field controls the steering of read and write cycles that address the BIOS area from OC_4000h to OC_7FFFh. O0 = DRAM Disabled. All accesses are directed to DMI. O1 = Read Only. All reads are sent to DRAM, all writes are forwarded to DMI. 10 = Write Only. All writes are sent to DRAM, all reads are serviced by DMI. 11 = Normal DRAM Operation. All reads and writes are serviced by DRAM. This register is locked by Intel TXT.
3:2	RO	0h		Reserved (RSVD)
1:0	RW	00Ь	Uncore	 OC0000-OC3FFF Attribute (LOENABLE) This field controls the steering of read and write cycles that address the BIOS area from 0C0000h to 0C3FFFh. 00 = DRAM Disabled. All reads are sent to DRAM. All writes are forwarded to DMI. 01 = Read Only. All reads are sent to DRAM. All writes are forwarded to DMI. 10 = Write Only. All writes are sent to DRAM. All reads are serviced by DMI. 11 = Normal DRAM Operation. All reads and writes are serviced by DRAM. This register is locked by Intel TXT.

2.5.23 PAM2—Programmable Attribute Map 2 Register

This register controls the read, write and shadowing attributes of the BIOS range from C_8000h to C_FFFFh. The Uncore allows programmable memory attributes on 13 legacy memory segments of various sizes in the 768 KB to 1 MB address range. Seven Programmable Attribute Map (PAM) registers are used to support these features. Cacheability of these areas is controlled using the MTRR register in the core.

Two bits are used to specify memory attributes for each memory segment. These bits apply to host accesses to the PAM areas. These attributes are:

- RE Read Enable. When RE=1, the host read accesses to the corresponding memory segment are claimed by the Uncore and directed to main memory. Conversely, when RE=0, the host read accesses are directed to DMI.
- WE Write Enable. When WE=1, the host write accesses to the corresponding memory segment are claimed by the Uncore and directed to main memory. Conversely, when WE=0, the host read accesses are directed to DMI.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Def		0/0/0/PCI 82h 00h RW 8 bits fault 0h		
Bit	Access	Reset Value	RST/ PWR	Description
7:6	RO	0h		Reserved (RSVD)
				0CC000–0CFFFF Attribute (HIENABLE) This field controls the steering of read and write cycles that
5:4	RW	00b	Uncore	 address the BIOS area from 0CC000h to 0CFFFFh. 00 = DRAM Disabled. All accesses are directed to DMI. 01 = Read Only. All reads are sent to DRAM, all writes are forwarded to DMI. 10 = Write Only. All writes are sent to DRAM, all reads are serviced by DMI. 11 = Normal DRAM Operation. All reads and writes are serviced by DRAM. This register is locked by Intel TXT.
3:2	RO	0h		Reserved (RSVD)
1:0	RW	00b	Uncore	 OC8000-OCBFFF Attribute (LOENABLE) This field controls the steering of read and write cycles that address the BIOS area from 0C8000h to 0CBFFFh. 00 = DRAM Disabled. All reads are sent to DRAM. All writes are forwarded to DMI. 01 = Read Only. All reads are sent to DRAM. All writes are forwarded to DMI. 10 = Write Only. All writes are sent to DRAM. All reads are serviced by DMI. 11 = Normal DRAM Operation. All reads and writes are serviced by DRAM. This register is locked by Intel TXT.

2.5.24 PAM3—Programmable Attribute Map 3 Register

This register controls the read, write and shadowing attributes of the BIOS range from D0000h to D7FFFh. The Uncore allows programmable memory attributes on 13 legacy memory segments of various sizes in the 768 KB to 1 MB address range. Seven Programmable Attribute Map (PAM) registers are used to support these features. Cacheability of these areas is controlled using the MTRR register in the core.

Two bits are used to specify memory attributes for each memory segment. These bits apply to host accesses to the PAM areas. These attributes are:

- RE Read Enable. When RE=1, the host read accesses to the corresponding memory segment are claimed by the Uncore and directed to main memory. Conversely, when RE=0, the host read accesses are directed to DMI.
- WE Write Enable. When WE=1, the host write accesses to the corresponding memory segment are claimed by the Uncore and directed to main memory. Conversely, when WE=0, the host read accesses are directed to DMI.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Det		0/0/0/PCI 83h 00h RW 8 bits fault 0h		
Bit	Access	Reset Value	RST/ PWR	Description
7:6	RO	0h		Reserved (RSVD)
5:4	RW	00b	Uncore	 OD4000-OD7FFF Attribute (HIENABLE) This field controls the steering of read and write cycles that address the BIOS area from 0D4000h to 0D7FFFh. 00 = DRAM Disabled. All accesses are directed to DMI. 01 = Read Only. All reads are sent to DRAM, all writes are forwarded to DMI. 10 = Write Only. All writes are sent to DRAM, all reads are serviced by DMI. 11 = Normal DRAM Operation. All reads and writes are serviced by DRAM. This register is locked by Intel TXT.
3:2	RO	0h		Reserved (RSVD)
1:0	RW	00Ь	Uncore	 OD0000-OD3FFF Attribute (LOENABLE) This field controls the steering of read and write cycles that address the BIOS area from 0D0000h to 0D3FFFh. 00 = DRAM Disabled. All reads are sent to DRAM. All writes are forwarded to DMI. 01 = Read Only. All reads are sent to DRAM. All writes are forwarded to DMI. 10 = Write Only. All writes are sent to DRAM. All reads are serviced by DMI. 11 = Normal DRAM Operation. All reads and writes are serviced by DRAM. This register is locked by Intel TXT.

2.5.25 PAM4—Programmable Attribute Map 4 Register

This register controls the read, write and shadowing attributes of the BIOS range from D8000h to DFFFFh. The Uncore allows programmable memory attributes on 13 legacy memory segments of various sizes in the 768 KB to 1 MB address range. Seven Programmable Attribute Map (PAM) registers are used to support these features. Cacheability of these areas is controlled using the MTRR register in the core.

Two bits are used to specify memory attributes for each memory segment. These bits apply to host accesses to the PAM areas. These attributes are:

- RE Read Enable. When RE=1, the host read accesses to the corresponding memory segment are claimed by the Uncore and directed to main memory. Conversely, when RE=0, the host read accesses are directed to DMI.
- WE Write Enable. When WE=1, the host write accesses to the corresponding memory segment are claimed by the Uncore and directed to main memory. Conversely, when WE=0, the host read accesses are directed to DMI.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Det		0/0/0/PCI 84h 00h RW 8 bits fault 0h			
Bit	Access	Reset Value	RST/ PWR	Description	
7:6	RO	0h		Reserved (RSVD)	
		00b	Uncore	0DC000-0DFFFF Attribute (HIENABLE)	
	RW			This field controls the steering of read and write cycles that address the BIOS area from 0DC000h to 0DFFFFh.	
				00 = DRAM Disabled. All accesses are directed to DMI.	
5:4				01 = Read Only. All reads are sent to DRAM, all writes are forwarded to DMI.	
				10 = Write Only. All writes are sent to DRAM, all reads are serviced by DMI.	
				11 = Normal DRAM Operation. All reads and writes are serviced by DRAM.	
				This register is locked by Intel TXT.	
3:2	RO	0h		Reserved (RSVD)	
	RW	00b	Uncore	0D8000–0DBFFF Attribute (LOENABLE)	
1:0				This field controls the steering of read and write cycles that address the BIOS area from 0D8000h to 0DBFFFh.	
				00 = DRAM Disabled. All reads are sent to DRAM. All writes are forwarded to DMI.	
				01 = Read Only. All reads are sent to DRAM. All writes are forwarded to DMI.	
				10 = Write Only. All writes are sent to DRAM. All reads are serviced by DMI.	
				11 = Normal DRAM Operation. All reads and writes are serviced by DRAM.	
				This register is locked by Intel TXT.	

2.5.26 PAM5—Programmable Attribute Map 5 Register

This register controls the read, write and shadowing attributes of the BIOS range from E_0000h to E_7FFFh. The Uncore allows programmable memory attributes on 13 legacy memory segments of various sizes in the 768 KB to 1 MB address range. Seven Programmable Attribute Map (PAM) registers are used to support these features. Cacheability of these areas is controlled using the MTRR register in the core.

Two bits are used to specify memory attributes for each memory segment. These bits apply to host accesses to the PAM areas. These attributes are:

- RE Read Enable. When RE=1, the host read accesses to the corresponding memory segment are claimed by the Uncore and directed to main memory. Conversely, when RE=0, the host read accesses are directed to DMI.
- WE Write Enable. When WE=1, the host write accesses to the corresponding memory segment are claimed by the Uncore and directed to main memory. Conversely, when WE=0, the host read accesses are directed to DMI.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Det		0/0/0/PCI 85h 00h RW 8 bits fault 0h			
Bit	Access	Reset Value	RST/ PWR	Description	
7:6	RO	0h		Reserved (RSVD)	
5:4	RW	00Ь	Uncore	 0E4000-0E7FFF Attribute (HIENABLE) This field controls the steering of read and write cycles that address the BIOS area from 0E4000h to 0E7FFFh. 00 = DRAM Disabled. All accesses are directed to DMI. 01 = Read Only. All reads are sent to DRAM, all writes are forwarded to DMI. 10 = Write Only. All writes are sent to DRAM, all reads are serviced by DMI. 11 = Normal DRAM Operation. All reads and writes are serviced by DRAM. This register is locked by Intel TXT. 	
3:2	RO	0h		Reserved (RSVD)	
1:0	RW	00Ь	Uncore	 OE0000-OE3FFF Attribute (LOENABLE) This field controls the steering of read and write cycles that address the BIOS area from 0E0000h to 0E3FFFh. O0 = DRAM Disabled. All reads are sent to DRAM. All writes are forwarded to DMI. O1 = Read Only. All reads are sent to DRAM. All writes are forwarded to DMI. 10 = Write Only. All writes are sent to DRAM. All reads are serviced by DMI. 11 = Normal DRAM Operation. All reads and writes are serviced by DRAM. This register is locked by Intel TXT. 	

2.5.27 PAM6—Programmable Attribute Map 6 Register

This register controls the read, write and shadowing attributes of the BIOS range from E_8000h to E_FFFFh. The Uncore allows programmable memory attributes on 13 legacy memory segments of various sizes in the 768 KB to 1 MB address range. Seven Programmable Attribute Map (PAM) registers are used to support these features. Cacheability of these areas is controlled using the MTRR register in the core.

Two bits are used to specify memory attributes for each memory segment. These bits apply to host accesses to the PAM areas. These attributes are:

- RE Read Enable. When RE=1, the host read accesses to the corresponding memory segment are claimed by the Uncore and directed to main memory. Conversely, when RE=0, the host read accesses are directed to DMI.
- WE Write Enable. When WE=1, the host write accesses to the corresponding memory segment are claimed by the Uncore and directed to main memory. Conversely, when WE=0, the host read accesses are directed to DMI.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Def		0/0/0/PCI 86h 00h RW 8 bits Fault 0h			
Bit	Access	Reset Value	RST/ PWR	Description	
7:6	RO	0h		Reserved (RSVD)	
	RW	00b	Uncore	0EC000-0EFFFF Attribute (HIENABLE)	
				This field controls the steering of read and write cycles that address the BIOS area from 0EC000h to 0EFFFFh.	
				00 = DRAM Disabled. All accesses are directed to DMI.	
5:4				01 = Read Only. All reads are sent to DRAM, all writes are forwarded to DMI.	
				10 = Write Only. All writes are sent to DRAM, all reads are serviced by DMI.	
				11 = Normal DRAM Operation. All reads and writes are serviced by DRAM.	
				This register is locked by Intel TXT.	
3:2	RO	0h		Reserved (RSVD)	
1:0	RW	00b	Uncore	0E8000-0EBFFF Attribute (LOENABLE)	
				This field controls the steering of read and write cycles that address the BIOS area from 0E8000h to 0EBFFFh.	
				00 = DRAM Disabled. All reads are sent to DRAM. All writes are forwarded to DMI.	
				01 = Read Only. All reads are sent to DRAM. All writes are forwarded to DMI.	
				10 = Write Only. All writes are sent to DRAM. All reads are serviced by DMI.	
				11 = Normal DRAM Operation. All reads and writes are serviced by DRAM.	
				This register is locked by Intel TXT.	

2.5.28 LAC-Legacy Access Control Register

This 8-bit register controls steering of MDA cycles and a fixed DRAM hole from 15–16 MB.

There can only be at most one MDA device in the system.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal De	0/0 87H 00H RW 8 b sfault 0h)/0/PCI 1 its					
Bit Access	Reset Value	RST/ PWR	Description				
7 RW	Оb	Uncore	Hole Enable (HEN) This field enables a memory hole in DRAM space. The DRAM that lies "behind" this space is not remapped. 0 = No memory hole. 1 = Memory hole from 15 MB to 16 MB. This bit is Intel TXT lockable.				
6:4 RO	0h		Reserved	(RSVD)			
3 RW	Ob	Uncore	Reserved (RSVD) PEG60 MDA Present (MDAP60) This bit works with the VGA Enable bits in the BCTRL register of Device 6 Function 0 to control the routing of processor initiated transactions targeting MDA compatible 1/0 and memory address ranges. This bit should not be set if Device 6 VGA Enable bit is not set. If Device 6 Function 0 VGA enable bit is not set, then accesses to I/O address range x3BCh-x3BFh remain on the backbone. If the VGA enable bit is set and MDA is not present, then accesses to I/O address range x3BCh-x3BFh are forwarded to PCI Express* through Device 6 Function 0 if the address is within the corresponding IOBASE and IOLIMIT, otherwise they remain on the backbone. MDA resources are defined as the following: Memory: 0B0000h-0B7FFFh I/O: 3B4h, 3B5h, 3B8h, 3B9h, 3BAh, 3BFh, (including ISA address aliases, A[15:10] are not used in decode) Any I/O reference that includes the I/O locations listed above, or their aliases, will remain on the backbone even if the reference also includes I/O locations not listed above. The following table shows the behavior for all combinations of MDA and VGA: VGAEN MDAP Description 0 0 All References to MDA and VGA space are not claimed by Device 6 Function 0. 1 Illegal combination 1 All VGA areferences are routed to PCI Express Graphics Attach Device 6 function 0. 0 All References are not claimed by Device 6 Function 0. 1 <t< td=""></t<>				

B/D/F/ Address Reset V Access: Size: BIOS O	Type: 5 Offset: alue: ptimal De	0/0 871 001 RW 8 b fault 0h)/0/PCI 1 its			
Bit	Access	Reset Value	RST/ PWR			Description
2	RW	ОЬ	Uncore	PEG12 MD. This bit wor Device 1 Fu transactions Enable bit is If Device 1 I I/O address If the VGA e accesses to PCI Express the corresp on the back MDA resour Memory I/O: Any I/O refe their aliases also include The followin MDA and VC VGAEN 0 1 1 VGA and MI when MAE (only be rout	A Presei A Presei ks with t inction 2 s targeting s bit shous s not set. Function s not set. Function fu	ht (MDAP12) he VGA Enable bits in the BCTRL register of to control the routing of processor initiated Ig MDA compatible I/O and memory address Id not be set if Device 1 Function 2 VGA 2 VGA enable bit is not set, then accesses to 3BCh-x3BFh remain on the backbone. t is set and MDA is not present, then ress range x3BCh-x3BFh are forwarded to Device 1 Function 2 if the address is within DBASE and IOLIMIT, otherwise they remain defined as the following: D000h-0B7FFFh 4h, 3B5h, 3B8h, 3B9h, 3BAh, 3BFh, cluding ISA address aliases, A[15:10] are not id indecode) tat includes the I/O locations listed above, or nain on the backbone even if the reference ations not listed above. shows the behavior for all combinations of Description All References to MDA and VGA space are not claimed by Device 1 Function 2. Illegal combination All VGA and MDA references are routed to PCI Express Graphics Attach Device 1 Function 2. All VGA references are not claimed by Device 1 Function 2. ory cycles can only be routed across PEG12 12[1]) is set. VGA and MDA I/O cycles can as PEG12 if IOAE (PCICMD12[0]) is set.

B/D/F/ Address Reset Va Access: Size: BIOS Op	3/D/F/Type:0/0/0/PCIAddress Offset:87hReset Value:00hAccess:RWSize:8 bitsBIOS Optimal Default0h					
Bit	Access	Reset Value	RST/ PWR			Description
				PEG11 MDA	A Preser	nt (MDAP11)
				This bit work Device 1 Fur transactions ranges. This Enable bit is	ks with the nction 1 to targetin bit shou not set.	ne VGA Enable bits in the BCTRL register of to control the routing of processor initiated g MDA compatible I/O and memory address Id not be set if Device 1 Function 1 VGA
				If Device 1 F I/O address	unction range x3	1 VGA enable bit is not set, then accesses to BBCh-x3BFh remain on the backbone.
				If the VGA e accesses to I Express* thr correspondir the backbon	nable bit I/O addre rough De ng IOBAS e.	is set and MDA is not present, then ess range x3BCh-x3BFh are forwarded to PCI vice 1 Function 1 if the address is within the SE and IOLIMIT, otherwise they remain on
				MDA resourc	ces are d	efined as the following:
				Memory:	0B000	00h-0B7FFh
				1/0:	3B4h, (inclue	3B5h, 3B8h, 3B9h, 3BAh, 3BFh, ding ISA address aliases, A[15:10] are not p decede)
1	RW	0b	Uncore	Any I/O refe their aliases also includes	rence th , will ren s I/O loca	at includes the I/O locations listed above, or nain on the backbone even if the reference ations not listed above.
				The following MDA and VG	g table s A:	hows the behavior for all combinations of
				VGAEN N	1DAP	Description
				0	0	All References to MDA and VGA space are not claimed by Device 1 Function 1.
				0	1	Illegal combination
				1	0	All VGA and MDA references are routed to PCI Express Graphics Attach Device 1 Function 1.
				1	1	All VGA references are routed to PCI Express Graphics Attach Device 1 Function 1. MDA references are not claimed by Device 1 Function 1.
				VGA and MD when MAE (I only be rout	A memo PCICMD1 ed acros	ry cycles can only be routed across PEG11 .1[1]) is set. VGA and MDA I/O cycles can s PEG11 if IOAE (PCICMD11[0]) is set.

B/D/F/Type:0/0/0/PCIAddress Offset:87hReset Value:00hAccess:RWSize:8 bitsBIOS Optimal Default0h						
Bit	Access	Reset Value	RST/ PWR			Description
				PEG10 MC)A Prese	ent (MDAP10) the VGA Enable bits in the BCTPL register of
				Device 1 For transaction ranges. The Enable bit	unction 0 is targeti is bit sho is not set	the vor Enable bits in the borker register of the control the routing of processor initiated ng MDA compatible I/O and memory address uld not be set if Device 1 Function 0 VGA t.
				If Device 1 I/O addres	Function s range >	0 VGA enable bit is not set, then accesses to x3BCh-x3BFh remain on the backbone.
				If the VGA accesses to PCI Expres the corresp on the bac	enable b o I/O add s througl oonding I kbone.	it is set and MDA is not present, then lress range x3BCh-x3BFh are forwarded to h Device 1 Function 0 if the address is within OBASE and IOLIMIT, otherwise they remain
				MDA resou	rces are	defined as the following:
				Memory	/: UB 3B	00000n-08/FFFN 44b 385b 388b 389b 38∆b 38Fb
				1,0.	(in us	icluding ISA address aliases, A[15:10] are not ed in decode)
0	RW	0b	Uncore	Any I/O ref their aliase also include	ference t s, will re es I/O lo	hat includes the I/O locations listed above, or main on the backbone even if the reference cations not listed above.
				The followi MDA and V	ng table 'GA:	shows the behavior for all combinations of
				VGAEN	MDAP	Description
				0	0	All References to MDA and VGA space are not claimed by Device 1 Function 0.
				0	1	Illegal combination
				1	0	All VGA and MDA references are routed to PCI Express Graphics Attach Device 1 Function 0.
				1	1	All VGA references are routed to PCI Express Graphics Attach Device 1 Function 0. MDA references are not claimed by Device 1 Function 0.
				VGA and M when MAE only be rou	DA mem (PCICMD ited acro	ory cycles can only be routed across PEG10 010[1]) is set. VGA and MDA I/O cycles can ss PEG10 if IOAE (PCICMD10[0]) is set.

2.5.29 REMAPBASE—Remap Base Address Register

B/D/F/Type:0/Address Offset:90Reset Value:00Access:RVSize:64BIOS Optimal Default00)/0/PCI 97h 00000FFFF(-L, RW-KL bits 000000000	00000h Oh
Bit	Access	Reset Value	RST/ PWR	Description
63:36	RO	0h		Reserved (RSVD)
35:20	RW-L	FFFFh	Uncore	Remap Base Address (REMAPBASE) The value in this register defines the lower boundary of the Remap window. The Remap window is inclusive of this address. In the decoder A[19:0] of the Remap Base Address are assumed to be 0s. Thus the bottom of the defined memory range will be aligned to a 1 MB boundary. When the value in this register is greater than the value programmed into the Remap Limit register, the Remap window is disabled. These bits are Intel TXT lockable.
19:1	RO	0h		Reserved (RSVD)
0	RW-KL	0b	Uncore	Lock (LOCK) This bit will lock all writeable settings in this register, including itself.

2.5.30 REMAPLIMIT—Remap Limit Address Register

B/D/F/Type:0/0/0/PCIAddress Offset:98–9FhReset Value:00000000000Access:RW-L, RW-KLSize:64 bitsBIOS Optimal Default00000000000				00000h 0h
Bit	Access	Reset Value	RST/ PWR	Description
63:36	RO	0h		Reserved (RSVD)
35:20	RW-L	0000h	Uncore	Remap Lim Remap Base register, the Remap window is disabled. These Bits are Intel TXT lockable.
19:1	RO	0h		Reserved (RSVD)
0	RW-KL	0b	Uncore	Lock (LOCK) This bit will lock all writeable settings in this register, including itself.

2.5.31 TOM—Top of Memory Register

This Register contains the size of physical memory. BIOS determines the memory size reported to the OS using this Register.

B/D/F/Type:0/0/0/PCIAddress Offset:A0-A7hReset Value:0000007FFFF0Access:RW-L, RW-KLSize:64 bitsBIOS Optimal Default00000000000			/0/PCI A7h 00007FFFF -L, RW-KL bits 000000000	00000h h
Bit	Access	Reset Value	RST/ PWR	Description
63:39	RO	0h		Reserved (RSVD)
38:20	RW-L	7FFFFh	Uncore	Top of Memory (TOM) This register reflects the total amount of populated physical memory. This is NOT necessarily the highest main memory address (holes may exist in main memory address map due to addresses allocated for memory mapped IO). These bits correspond to address bits 38:20 (1 MB granularity). Bits 19:0 are assumed to be 0. All the bits in this register are locked in Intel TXT mode.
19:1	RO	0h		Reserved (RSVD)
0	RW-KL	0b	Uncore	Lock (LOCK) This bit will lock all writeable settings in this register, including itself.

2.5.32 TOUUD—Top of Upper Usable DRAM Register

This 64 bit register defines the Top of Upper Usable DRAM.

Configuration software must set this value to TOM minus all Intel ME stolen memory if reclaim is disabled. If reclaim is enabled, this value must be set to reclaim limit + 1 byte, 1 MB aligned, since reclaim limit is 1 MB aligned. Address bits 19:0 are assumed to be 000_0000h for the purposes of address comparison. The Host interface positively decodes an address towards DRAM if the incoming address is less than the value programmed in this register and greater than or equal to 4 GB.

BIOS Restriction: Minimum value for TOUUD is 4 GB.

These bits are Intel TXT lockable.

B/D/F/Type: 0/0/0/PCI Address Offset: A8-AFh Reset Value: 00000000000 Access: RW-KL, RW-L Size: 64 bits BIOS Optimal Default 000000000000000000000000000000000000)/0/PCI -AFh)000000000 -KL, RW-L bits)000000000	00000h
Bit	Access	Reset Value	RST/ PWR	Description
63:39	RO	0h		Reserved (RSVD)
38:20	RW-L	00000h	Uncore	TOUUD (TOUUD) This register contains bits 38:20 of an address one byte above the maximum DRAM memory above 4 GB that is usable by the operating system. Configuration software must set this value to TOM minus all Intel ME stolen memory if reclaim is disabled. If reclaim is enabled, this value must be set to reclaim limit 1 MB aligned since reclaim limit + 1byte is 1 MB aligned. Address bits 19:0 are assumed to be 000_0000h for the purposes of address comparison. The Host interface positively decodes an address towards DRAM if the incoming address is less than the value programmed in this register and greater than 4 GB. All the bits in this register are locked in Intel TXT mode.
19:1	RO	0h		Reserved (RSVD)
0	RW-KL	0b	Uncore	Lock (LOCK) This bit will lock all writeable settings in this register, including itself.

2.5.33 BDSM—Base Data of Stolen Memory Register

This register contains the base address of graphics data stolen DRAM memory. BIOS determines the base of graphics data stolen memory by subtracting the graphics data stolen memory size (PCI Device 0 offset 52 bits 7:4) from TOLUD (PCI Device 0 offset BCh bits 31:20).

B/D/F/Type:0/0/0/PCIAddress Offset:B0-B3hReset Value:00000000hAccess:RW-KL, RW-LSize:32 bitsBIOS Optimal Default00000h)/0/PCI -B3h 000000h -KL, RW-L bits 000h	
Bit	Access	Reset Value	RST/ PWR	Description
31:20	RW-L	000h	Uncore	Graphics Base of Stolen Memory (BDSM): This register contains bits 31:20 of the base address of stolen DRAM memory. BIOS determines the base of graphics stolen memory by subtracting the graphics stolen memory size (PCI Device 0 offset 52 bits 6:4) from TOLUD (PCI Device 0 offset BCh bits 31:20).
19:1	RO	0h		Reserved (RSVD)
0	RW-KL	0b	Uncore	Lock (LOCK) This bit will lock all writeable settings in this register, including itself.

2.5.34 BGSM—Base of GTT Stolen Memory Register

This register contains the base address of stolen DRAM memory for the GTT. BIOS determines the base of GTT stolen memory by subtracting the GTT graphics stolen memory size (PCI Device 0 offset 52h bits 9:8) from the Graphics Base of Data Stolen Memory (PCI Device 0 offset B0h bits 31:20).

B/D/F/Type:0/0/0/PCIAddress Offset:B4-B7hReset Value:00100000hAccess:RW-L, RW-KLSize:32 bitsBIOS Optimal Default00000h)/0/PCI -B7h L00000h -L, RW-KL bits 000h		
Bit	Access	Reset Value	RST/ PWR	Description
31:20	RW-L	001h	Uncore	Graphics Base of GTT Stolen Memory (BGSM) This register contains the base address of stolen DRAM memory for the GTT. BIOS determines the base of GTT stolen memory by subtracting the GTT graphics stolen memory size (PCI Device 0 offset 52h bits 11:8) from the Graphics Base of Data Stolen Memory (PCI Device 0 offset B0h bits 31:20).
19:1	RO	0h		Reserved (RSVD)
0	RW-KL	0b	Uncore	Lock (LOCK) This bit will lock all writeable settings in this register, including itself.

2.5.35 TSEGMB—TSEG Memory Base Register

This register contains the base address of TSEG DRAM memory. BIOS determines the base of TSEG memory which must be at or below Graphics Base of GTT Stolen Memory (PCI Device 0 Offset B4h bits 31:20).

Note: BIOS must program TSEGMB to an 8 MB naturally aligned boundary.

B/D/F/Type:0/0/0/PCIAddress Offset:B8-BBhReset Value:0000000hAccess:RW-L, RW-KLSize:32 bitsBIOS Optimal Default00000h			0/0/PCI -BBh 000000h -L, RW-KL bits 000h	
Bit	Access	Reset Value	RST/ PWR	Description
31:20	RW-L	000h	Uncore	TESG Memory base (TSEGMB) This register contains the base address of TSEG DRAM memory. BIOS determines the base of TSEG memory which must be at or below Graphics Base of GTT Stolen Memory (PCI Device 0 Offset B4h bits 31:20).
19:1	RO	0h		Reserved (RSVD)
0	RW-KL	0b	Uncore	Lock (LOCK) This bit will lock all writeable settings in this register, including itself.

2.5.36 TOLUD—Top of Low Usable DRAM Register

This 32 bit register defines the Top of Low Usable DRAM. TSEG, GTT Graphics memory and Graphics Stolen Memory are within the DRAM space defined. From the top, the Host optionally claims 1 to 64 MB of DRAM for internal graphics if enabled, 1 or 2 MB of DRAM for GTT Graphics Stolen Memory (if enabled) and 1, 2, or 8 MB of DRAM for TSEG if enabled.

Programming Example:

C1DRB3 is set to 4 GB

TSEG is enabled and TSEG size is set to 1 MB

Internal Graphics is enabled, and Graphics Mode Select is set to 32 MB

GTT Graphics Stolen Memory Size set to 2 MB

BIOS knows the OS requires 1 GB of PCI space.

BIOS also knows the range from 0_FEC0_0000h to 0_FFFF_FFFFh is not usable by the system. This 20 MB range at the very top of addressable memory space is lost to APIC and Intel TXT.

According to the above equation, TOLUD is originally calculated to: $4 \text{ GB} = 1_{0000}0000h$

The system memory requirements are: 4 GB (max addressable space) – 1G B (PCI space) – 35 MB (lost memory) = 3 GB – 35 MB (minimum granularity) = 0_ECB0_0000h

Since 0_ECB0_0000h (PCI and other system requirements) is less than 1_0000_0000h, TOLUD should be programmed to ECBh.

These bits are Intel TXT lockable.

B/D/F/Type:0/0/0/PCIAddress Offset:BC-BFhReset Value:00100000hAccess:RW-KL, RW-LSize:32 bitsBIOS Optimal Default00000h)/0/PCI -BFh 100000h -KL, RW-L bits)00h	
Bit	Access	Reset Value	RST/ PWR	Description
				Top of Low Usable DRAM (TOLUD)
31:20	RW-L	001h	Uncore	This register contains bits 31:20 of an address one byte above the maximum DRAM memory below 4 GB that is usable by the operating system. Address bits 31:20 programmed to 01h implies a minimum memory size of 1 MB. Configuration software must set this value to the smaller of the following 2 choices: maximum amount memory in the system minus Intel ME stolen memory plus one byte or the minimum address allocated for PCI memory. Address bits 19:0 are assumed to be 0_0000h for the purposes of address comparison. The Host interface positively decodes an address towards DRAM if the incoming address is less than the value programmed in this register. The Top of Low Usable DRAM is the lowest address above both Graphics Stolen memory and TSEG. BIOS determines the base of Graphics Stolen Memory by subtracting the Graphics Stolen Memory Size from TOLUD and further decrements by TSEG size to determine base of TSEG. All the Bits in this register are locked in Intel TXT mode. This register must be 1 MB aligned when reclaim is enabled.
19:1	RO	0h		Reserved (RSVD)
0	RW-KL	0b	Uncore	Lock (LOCK): This bit will lock all writeable settings in this register, including itself.

2.5.37 SKPD—Scratchpad Data Register

This register holds 32 writable bits with no functionality behind them. It is for the convenience of BIOS and graphics drivers.

B/D/F/ Address Reset V Access: Size:	/D/F/Type:0/0/0/PCIddress Offset:DC-DFheset Value:0000000hccess:RWize:32 bits		/0/PCI DFh 00000h Dits	
Bit	Access	Reset Value	RST/ PWR	Description
31:0	RW	00000000h	Uncore	Scratchpad Data (SKPD) 1 DWord of data storage.

2.5.38 CAPIDO_A—Capabilities A Register

This register control of bits in this register are only required for customer visible SKU differentiation.

B/D/F/Type:0/0/0/PCIAddress Offset:E4-E7hReset Value:0000000hAccess:RO-FW, ROSize:32 bitsBIOS Optimal Default:000000h		/PCI h 000h /, RO-KFW s 0h		
Bit	Access	Reset Value	RST/ PWR	Description
31	RO-KFW	0b		Reserved (RSVD)
30	RO-KFW	0b		Reserved (RSVD)
29	RO-KFW	0b		Reserved (RSVD)
28	RO-KFW	0b		Reserved (RSVD)
27	RO-FW	0b		Reserved (RSVD)
26	RO-FW	0b		Reserved (RSVD)
25	RO-FW	0b	Uncore	ECC Disable (ECCDIS) 0 = ECC capable 1 = Not ECC capable
24	RO-FW	0b		Reserved (RSVD)
23	RO-KFW	Ob	Uncore	VTd Disable (VTDD) 0 = Enable VTd 1 = Disable VTd
22	RO-FW	0b		Reserved (RSVD)
21	RO-FW	0b		Reserved (RSVD)
20:19	RO-FW	00b		Reserved (RSVD)
18	RO-FW	0b		Reserved (RSVD)
17	RO-FW	0b		Reserved (RSVD)
16	RO-FW	0b		Reserved (RSVD)
15	RO-KFW	0b		Reserved (RSVD)
14	RO-FW	ОЬ	Uncore	 2 DIMMS per Channel Disable (DDPCD) This bit allows Dual Channel operation but only supports 1 DIMM per channel. 0 = 2 DIMMs per channel enabled 1 = 2 DIMMs per channel disabled. This setting hardwires bits 2 and 3 of the rank population field for each channel to zero. (MCHBAR offset 260h, bits 22:23 for channel 0 and MCHBAR offset 660h, bits 22:23 for channel 1)
13	RO-FW	0b		Reserved (RSVD)
12	RO-FW	0b		Reserved (RSVD)
11	RO-KFW	0b		Reserved (RSVD)
10	RO-FW	0b		Reserved (RSVD)
9:8	RO-FW	00b		Reserved (RSVD)
7:4	RO-FW	0h		Reserved (RSVD)

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default:		0/0/0/PCI E4-E7h 00000000h R0-FW, R0-KFW 32 bits 000000h		
Bit	Access	Reset Value	RST/ PWR	Description
2	RO-FW	Ob	Uncore	IA Overclocking Enabled by DSKU (OC_ENABLED_DSKU) The default constant (non-fuse) value is zero. When the VDM sets this bit, OC will be applied if OC_CTL_SSKU points to DSKU.
1	RO-FW	0b	Uncore	On-die DDR write Vref generation allowed (DDR_WRTVREF) This bit allow on-die DDR write Vref generation. PCODE will update this field with the value of FUSE_DDR_WRTVREF.
0	RO-FW	Ob	Uncore	DDR3L (1.35V DDR) operation allowed (DDR3L_EN) This bit allows DDR3L (1.35V DDR) operation. PCODE will update this field with the value of FUSE_DDR3L_EN.

2.5.39 CAPIDO_B—Capabilities B Register

Control of bits in this register are only required for customer visible SKU differentiation.

B/D/F/Type:0/0/0/Address Offset:E8-EBhDefault Value:001000Access:RO-FW,Size:32 bitsBIOS Optimal Default:000000		/PCI 000h , RO-KFW)h	,		
Bit	Access	Reset Value	RST/ PWR	Description	
31	RO-FW	0h		Reserved (RSVD)	
30	RO-FW	0b		Reserved (RSVD)	
29	RO-FW	0b		Reserved (RSVD)	
28	RO-FW	0b	Uncore	SMT Capability (SMT) This setting indicates whether or not the processor is SMT capable.	
27:25	RO-FW	000b	Uncore	Cache Size Capability (CACHESZ) This setting indicates the supporting cache sizes.	
24	RO-FW	0b		Reserved (RSVD)	
23:21	RO-FW	000Ь	Uncore	DDR3 Maximum Frequency Capability with 100 Memory (PLL_REF100_CFG)DDR3 Maximum Frequency Capability with 100 MHz memory. PCODE will update this field with the value of FUSE_PLL_REF100_CFG and then apply SSKU overrides.Maximum allowed memory frequency with 100 MHz reference clock. Also serves as defeature.Unlike 133 MHz reference fuses, these are normal 3-bit fields.0 = 100 MHz ref disabled1 = Up to DDR-1400 (7 x 200)2 = Up to DDR-1600 (8 x 200)3 = Up to DDR-1800 (8 x 200)4 = Up to DDR-2000 (10 x 200)5 = Up to DDR-2000 (11 x 200)6 = Up to DDR-2400 (12 x 200)7 = No limit (but still limited by %MAX_DDR_FREQ200 to 2600)PCIE Gen 3 Disable (PEGG3_DIS)	
20	RO-FW	Оb	Uncore	 PCODE will update this field with the value of FUSE_PEGG3_DIS and then apply SSKU overrides. This is a defeature fuse – an un-programmed device should have PCIe Gen 3 capabilities enabled. 0 = Capable of running any of the Gen 3-compliant PEG controllers in Gen 3 mode (Devices 0/1/0, 0/1/1, 0/1/2) 1 = Not capable of running any of the PEG controllers in Gen 3 mode 	
19	RO-FW	0b		Reserved (RSVD)	
18	RO-FW	0b	Uncore	Additive Graphics Enabled (ADDGFXEN) 0 = Additive Graphics Disabled 1 = Additive Graphics Enabled	
17	RO-FW	0b	Uncore	Additive Graphics Capable (ADDGFXCAP) 0 = Capable of Additive Graphics 1 = Not capable of Additive Graphics	
16	RO-FW	0b		Reserved (RSVD)	
15:12	RO-FW	0h		Reserved (RSVD)	

B/D/F/Type:0/0/0/Address Offset:E8-EBhDefault Value:001000Access:RO-FW,Size:32 bitsBIOS Optimal Default:000000		/PCI 000h , RO-KFW	,	
Bit	Access	Reset Value	RST/ PWR	Description
11	RO-FW	0b		Reserved (RSVD)
10:8	RO-FW	000b		Reserved (RSVD)
7	RO-FW	0b		Reserved (RSVD)
6:4	RO-FW	000Ь	Uncore	DDR3 Maximum Frequency Capability (DMFC)PCODE will update this field with the value of FUSE_DMFC, and then apply SSKU overrides.Maximum allowed memory frequency with 133 MHz reference clock.This is a reversed 3-bit field: $7 = Up$ to DDR-1066 (4 x 266) $6 = Up$ to DDR-1066 (4 x 266) $5 = Up$ to DDR-1600 (6 x 266) $4 = Up$ to DDR-1600 (6 x 266) $3 = Up$ to DDR-1866 (7 x 266) $3 = Up$ to DDR-2133 (8 x 266) $2 = Up$ to DDR-2400 (9 x 266) $1 = Up$ to DDR-2666 (10 x 266) $0 = Up$ to DDR-2933 (11 x 266) reserved fuse value; not really supported;
3	RO-FW	0b		Reserved (RSVD)
2	RO-FW	0b		Reserved (RSVD)
1	RO-FW	0b		Reserved (RSVD)
0	RO-FW	0b		Reserved (RSVD)

2.5.40 ERRSTS—Error Status Register

This register is used to report various error conditions using the SERR DMI messaging mechanism. An SERR DMI message is generated on a zero to one transition of any of these flags (if enabled by the ERRCMD and PCICMD registers).

These bits are set regardless of whether or not the SERR is enabled and generated. After the error processing is complete, the error logging mechanism can be unlocked by clearing the appropriate status bit by software writing a '1' to it.

B/D/F/Type:0/0/0/PCIAddress Offset:C8-C9hReset Value:0000hAccess:RW1CSSize:16 bitsBIOS Optimal Default0000h		/0/0/PCI 8-C9h 000h W1CS 6 bits 000h		
Bit	Access	Reset Value	RST/ PWR	Description
15:2	RO	0h		Reserved (RSVD)
1	RW1CS	Ob	Powergood	Multiple-bit DRAM ECC Error Flag (DMERR) If this bit is set to 1, a memory read data transfer had an uncorrectable multiple-bit error. When this bit is set, the column, row, bank, and rank that caused the error, and the error syndrome, are logged in the ECC Error Log register in the channel where the error occurred. Once this bit is set, the ECCERRLOGx fields are locked until the processor clears this bit by writing a 1. Software uses bits [1:0] to detect whether the logged error address is for a Single-bit or a Multiple-bit error. This bit is reset on PWROK.
0	RW1CS	Ob	Powergood	Single-bit DRAM ECC Error Flag (DSERR) If this bit is set to 1, a memory read data transfer had a single- bit correctable error and the corrected data was returned to the requesting agent. When this bit is set the column, row, bank, and rank where the error occurred and the syndrome of the error are logged in the ECC Error Log register in the channel where the error occurred. Once this bit is set the ECCERRLOGX fields are locked to further single-bit error updates until the processor clears this bit by writing a 1. A multiple bit error that occurs after this bit is set will overwrite the ECCERRLOGX fields with the multiple-bit error signature and the DMERR bit will also be set. A single bit error that occurs after a multibit error will set this bit but will not overwrite the other fields. This bit is reset on PWROK.

2.5.41 ERRCMD—Error Command Register

This register controls the Host Bridge responses to various system errors. Since the Host Bridge does not have an SERR# signal, SERR messages are passed from the processor to the PCH over DMI.

When a bit in this register is set, a SERR message will be generated on DMI whenever the corresponding flag is set in the ERRSTS register. The actual generation of the SERR message is globally enabled for Device 0 using the PCI Command register.

B/D/F/Type:0/0/0/IAddress Offset:CA-CBhReset Value:0000hAccess:RWSize:16 bitsBIOS Optimal Default0000h		0/0/PCI -CBh 00h / bits 00h		
Bit	Access	Reset RST/ Value PWR		Description
15:2	RO	0h		Reserved (RSVD)
1	RW	Оb	Uncore	 SERR Multiple-Bit DRAM ECC Error (DMERR) 1 = The Host Bridge generates an SERR message over DMI when it detects a multiple-bit error reported by the DRAM controller. 0 = Reporting of this condition using SERR messaging is disabled. For systems not supporting ECC, this bit must be disabled.
0	RW	0b	Uncore	 SERR on Single-bit ECC Error (DSERR) 1 = The Host Bridge generates an SERR special cycle over DMI when the DRAM controller detects a single bit error. 0 = Reporting of this condition using SERR messaging is disabled. For systems that do not support ECC, this bit must be disabled.

2.5.42 SMICMD—SMI Command Register

This register enables various errors to generate an SMI DMI special cycle. When an error flag is set in the ERRSTS register, it can generate an SERR, SMI, or SCI DMI special cycle when enabled in the ERRCMD, SMICMD, or SCICMD registers, respectively.

Note: Only one message type can be enabled.

B/D/F/Type:0/0/0//Address Offset:CC-CDhReset Value:0000hAccess:RWSize:16 bitsBIOS Optimal Default0000h		0/0/PCI -CDh 00h / bits 00h		
Bit	Access	Reset Value	RST/ PWR	Description
15:2	RO	0h		Reserved (RSVD)
1	RW	0b	Uncore	 SMI on Multiple-Bit DRAM ECC Error (DMESMI) 1 = The Host generates an SMI DMI message when it detects a multiple-bit error reported by the DRAM controller. 0 = Reporting of this condition using SMI messaging is disabled. For systems not supporting ECC, this bit must be disabled.
0	RW	0b	Uncore	 SMI on Single-bit ECC Error (DSESMI) 1 = The Host generates an SMI DMI special cycle when the DRAM controller detects a single bit error. 0 = Reporting of this condition using SMI messaging is disabled. For systems that do not support ECC, this bit must be disabled.

2.5.43 SCICMD—SCI Command Register

This register enables various errors to generate an SMI DMI special cycle. When an error flag is set in the ERRSTS register, it can generate an SERR, SMI, or SCI DMI special cycle when enabled in the ERRCMD, SMICMD, or SCICMD registers, respectively.

Note: Only one message type can be enabled.

B/D/F/Type:0/0/0/PAddress Offset:CE-CFhReset Value:0000hAccess:RWSize:16 bitsBIOS Optimal Default0000h)/0/PCI -CFh)0h / bits)0h		
Bit	Access	Reset Value	RST/ PWR	Description
15:2	RO	0h		Reserved (RSVD)
1	RW	0b Uncore		 SCI on Multiple-Bit DRAM ECC Error (DMESCI) 1 = The Host generates an SCI DMI message when it detects a multiple-bit error reported by the DRAM controller. 0 = Reporting of this condition using SCI messaging is disabled. For systems not supporting ECC, this bit must be disabled.
0	RW	0b Uncore		 SCI on Single-bit ECC Error (DSESCI) 1 = The Host generates an SCI DMI special cycle when the DRAM controller detects a single bit error. 0 = Reporting of this condition using SCI messaging is disabled. For systems that do not support ECC, this bit must be disabled.

2.6 PCI Device 1 Function 0–2 Configuration Space Registers

Table 2-9. PCI Device 1 Function 0-2 Configuration Space Register Address Map (Sheet 1 of 2)

Address Offset	Register Symbol	Register Name	Reset Value	Access
0-1h	VID	Vendor Identification	8086h	RO
2-3h	DID	Device Identification	0151h	RO-FW
4-5h	PCICMD	PCI Command	0000h	RO, RW
6-7h	PCISTS	PCI Status	0010h	RO, RW1C, RO-V
8h	RID	Revision Identification	00h	RO-FW
9-Bh	CC	Class Code	060400h	RO
Ch	CL	Cache Line Size	00h	RW
Dh	RSVD	Reserved	0h	RO
Eh	HDR	Header Type	81h	RO
F-17h	RSVD	Reserved	0h	RO
18h	PBUSN	Primary Bus Number	00h	RO
19h	SBUSN	Secondary Bus Number	00h	RW
1Ah	SUBUSN	Subordinate Bus Number	00h	RW
1Bh	RSVD	Reserved	0h	RO
1Ch	IOBASE	I/O Base Address	F0h	RW
1Dh	IOLIMIT	I/O Limit Address	00h	RW
1E-1Fh	SSTS	Secondary Status	0000h	RW1C, RO
20-21h	MBASE	Memory Base Address	FFF0h	RW
22-23h	MLIMIT	Memory Limit Address	0000h	RW
24-25h	PMBASE	Prefetchable Memory Base Address	FFF1h	RO, RW
26-27h	PMLIMIT	Prefetchable Memory Limit Address	0001h	RW, RO
28-2Bh	PMBASEU	Prefetchable Memory Base Address Upper	00000000h	RW
2C-2Fh	PMLIMITU	Prefetchable Memory Limit Address Upper	00000000h	RW
30-33h	RSVD	Reserved	0h	RO
34h	CAPPTR	Capabilities Pointer	88h	RO
35-3Bh	RSVD	Reserved	0h	RO
3Ch	INTRLINE	Interrupt Line	00h	RW
3Dh	INTRPIN	Interrupt Pin	01h	RW-O, RO
3E-3Fh	BCTRL	Bridge Control	0000h	RO, RW
40-7Fh	RSVD	Reserved	0h	RO
80-83h	PM_CAPID	Power Management Capabilities	C8039001h	RO, RO-V
84-87h	PM_CS	Power Management Control/Status	0000008h	RO, RW
88-8Bh	SS_CAPID	Subsystem ID and Vendor ID Capabilities	0000800Dh	RO
8C-8Fh	SS	Subsystem ID and Subsystem Vendor ID	00008086h	RW-O
90-91h	MSI_CAPID	Message Signaled Interrupts Capability ID	A005h	RO

Table 2-9.	PCI Device 1 Function 0–2 Configuration Space Register Address Map (Sheet 2
	of 2)

Address Offset	Register Symbol	Register Name	Reset Value	Access
92-93h	MC	Message Control	0000h	RW, RO
94-97h	MA	Message Address	00000000h	RW, RO
98-99h	MD	Message Data	0000h	RW
9A-9Fh	RSVD	Reserved	0h	RO
A0-A1h	PEG_CAPL	PCI Express-G Capability List	0010h	RO
A2-A3h	PEG_CAP	PCI Express-G Capabilities	0142h	RO, RW-O
A4-A7h	DCAP	Device Capabilities	00008000h	RO, RW-O
A8-A9h	DCTL	Device Control	0020h	RO, RW
AA-ABh	DSTS	Device Status	0000h	RW1C, RO
AC-AFh	LCAP	Link Capabilities	0261CD03h	RO, RO-V, RW-O, RW-OV
B0-B1h	LCTL	Link Control	0000h	RW, RO, RW-V
B2-B3h	LSTS	Link Status	1001h	RW1C, RO-V, RO
B4-B7h	SLOTCAP	Slot Capabilities	00040000h	RW-O, RO
B8-B9h	SLOTCTL	Slot Control	0000h	RO
BA-BBh	SLOTSTS	Slot Status	0000h	RO, RW1C, RO-V
BC-BDh	RCTL	Root Control	0000h	RO, RW
BE-BFh	RSVD	Reserved	0h	RO
C0-C3h	RSTS	Root Status	00000000h	RO, RW1C, RO-V
C4-C7h	DCAP2	Device Capabilities 2	00000800h	RO, RW-O
C8-C9h	DCTL2	Device Control 2	0000h	RW-V, RW
CA-CBh	RSVD	Reserved	0h	RO
CC-CFh	LCAP2	Link Capabilities 2	0000000Eh	RO-V
D0-D1h	LCTL2	Link Control 2	0003h	RWS, RWS-V
D2-D3h	LSTS2	Link Status 2	0000h	RO-V, RW1C

2.6.1 VID-Vendor Identification Register

This register, combined with the Device Identification register, uniquely identify any PCI device.

B/D/F/Type:0/1/0-2/PCIAddress Offset:0-1hReset Value:8086hAccess:ROSize:16 bits		l/0–2/PCI lh 36h bits		
Bit	Access	Reset Value	RST/ PWR	Description
15:0	RO	8086h	Uncore	Vendor Identification (VID) PCI standard identification for Intel.

2.6.2 DID—Device Identification Register

This register combined with the Vendor Identification register uniquely identifies any PCI device.

B/D/F/Type:0/1/0-2/PCIAddress Offset:2-3hReset Value:0151hAccess:RO-FWSize:16 bits		./0–2/PCI Bh i1h ·FW bits		
Bit	Access	Reset Value	RST/ PWR	Description
15:0	RO-FW	0151h	Uncore	Device Identification Number MSB (DID_MSB) Identifier assigned to the processor root port (virtual PCI-to-PCI bridge, PCI Express Graphics port).

2.6.3 PCICMD—PCI Command Register

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/1 4-5 000 RO, 16 fault 00f	/0-2/PCI 5h 00h RW bits	
Bit	Access	Reset Value	RST/ PWR	Description
15:11	RO	0h		Reserved (RSVD)
10	RW	ОЬ	Uncore	 INTA Assertion Disable (INTAAD) 0 = This device is permitted to generate INTA interrupt messages. 1 = This device is prevented from generating interrupt messages. Any INTA emulation interrupts already asserted must be de-asserted when this bit is set. This bit only affects interrupts generated by the device (PCI INTA from a PME or Hot-plug event) controlled by this command register. It does not affect upstream MSIs, upstream PCI INTA-INTD assert and deassert messages. Note: PCI Express* Hot-Plug is not supported on the processor.
9	RO	0b	Uncore	Fast Back-to-Back Enable (FB2B) Not Applicable or Implemented. Hardwired to 0.

B/D/F/ Address Reset V Access: Size: BIOS Op	Type: Offset: alue: otimal Def	0/1 4–5 000 RO, 16 fault 00H	l/0-2/PCI 5h 00h , RW bits 1	
Bit	Access	Reset Value	RST/ PWR	Description
				SERR# Message Enable (SERRE) This bit controls the root port's SERR# messaging. The processor communicates the SERR# condition by sending an SERR message to the PCH. This bit, when set, enables reporting of non-fatal and fatal errors detected by the device to the Root Complex. Note that errors are reported if enabled either through this bit or through the PCI Express* specific bits in the Device Control Register.
8	RW	Ob	Uncore	In addition, for Type 1 configuration space header devices, this bit, when set, enables transmission by the primary interface of ERR_NONFATAL and ERR_FATAL error messages forwarded from the secondary interface. This bit does not affect the transmission of forwarded ERR_COR messages.
				0 = The SERR message is generated by the root port only under conditions enabled individually through the Device Control Register.
				1 = The root port is enabled to generate SERR messages which will be sent to the PCH for specific root port error conditions generated/detected or received on the secondary side of the virtual PCI to PCI bridge. The status of SERRs generated is reported in the PCISTS register.
7	RO	0h		Reserved (RSVD)
6	RW	Ob	Uncore	 Parity Error Response Enable (PERRE) This bit controls whether or not the Master Data Parity Error bit in the PCI Status register can bet set. 0 = Master Data Parity Error bit in PCI Status register can NOT be set. 1 = Master Data Parity Error bit in PCI Status register CAN be set.
5	RO	0b	Uncore	VGA Palette Snoop (VGAPS) Not Applicable or Implemented. Hardwired to 0.
4	RO	0b	Uncore	Memory Write and Invalidate Enable (MWIE) Not Applicable or Implemented. Hardwired to 0.
3	RO	0b	Uncore	Special Cycle Enable (SCE) Not Applicable or Implemented. Hardwired to 0.
2	RW	Ob	Uncore	 Bus Master Enable (BME) This bit controls the ability of the PEG port to forward Memory Read/Write Requests in the upstream direction. 0 = This device is prevented from making memory requests to its primary bus. Note that according to PCI Specification, as MSI interrupt messages are in-band memory writes, disabling the bus master enable bit prevents this device from generating MSI interrupt messages or passing them from its secondary bus to its primary bus. Upstream memory writes/reads, peer writes/reads, and MSIs will all be treated as illegal cycles. Writes are aborted. Reads are aborted and will return Unsupported Request status (or Master abort) in its completion packet. 1 = This device is allowed to issue requests to its primary bus. Completions for previously issued memory read requests on the primary bus will be issued when the data is available. This bit does not affect forwarding of Completions from the primary interface to the secondary interface.

B/D/F/Type:0/1/0-Address Offset:4-5hReset Value:0000hAccess:RO, RWSize:16 bitsBIOS Optimal Default00h			/0-2/PCI 5h 00h RW bits	
Bit	Access	Reset Value	RST/ PWR	Description
1	RW	Ob	Uncore	 Memory Access Enable (MAE) 0 = All of device's memory space is disabled. 1 = Enable the Memory and Pre-fetchable memory address ranges defined in the MBASE, MLIMIT, PMBASE, and PMLIMIT registers.
0	RW	0b	Uncore	 IO Access Enable (IOAE) 0 = All of device's I/O space is disabled. 1 = Enable the I/O address range defined in the IOBASE, and IOLIMIT registers.

2.6.4 PCISTS—PCI Status Register

This register reports the occurrence of error conditions associated with primary side of the "virtual" Host-PCI Express* bridge embedded within the Root port.

B/D/F/Type:0/1,Address Offset:6-71Reset Value:0010Access:RO,Size:16 bBIOS Optimal Default0h			/0-2/PCI /h l0h RW1C, RC bits)-V
Bit	Access	Reset Value	RST/ PWR	Description
				Detected Parity Error (DPE)
15	RW1C	ОЬ	Uncore	This bit is set by a Function whenever it receives a Poisoned TLP, regardless of the state the Parity Error Response bit in the Command register. On a Function with a Type 1 Configuration header, the bit is set when the Poisoned TLP is received by its Primary Side. Reset Value of this bit is 0b. This bit will be set only for completions of requests encountering ECC error in DRAM. Poisoned peer-to-peer posted forwarded will not set this bit. They are reported at the receiving port.
14	RW1C	0b	Uncore	Signaled System Error (SSE) This bit is set when this Device sends an SERR due to detecting an ERR_FATAL or ERR_NONFATAL condition and the SERR Enable bit in the Command register is '1'. Both received (if enabled by BCTRL1[1]) and internally detected error messages do not affect this field.
13	RO	0b	Uncore	Received Master Abort Status (RMAS) This bit is set when a Requester receives a Completion with Unsupported Request Completion Status. On a Function with a Type 1 Configuration header, the bit is set when the Unsupported Request is received by its Primary Side. Not applicable. UR not on primary interface.

B/D/F/ Address Reset Va Access: Size: BIOS Op	Type: offset: alue: otimal De	0/1 6-7 001 RO, 16 fault Oh	/0-2/PCI /h l0h RW1C, RO bits	I-V
Bit	Access	Reset Value	RST/ PWR	Description
				Received Target Abort Status (RTAS)
12	RO	0b	Uncore	This bit is set when a Requester receives a Completion with Completer Abort Completion Status. On a Function with a Type 1 Configuration header, the bit is set when the Completer Abort is received by its Primary Side. Reset Value of this bit is 0b.
				Not Applicable or Implemented. Hardwired to 0. The concept of a Completer abort does not exist on primary side of this device.
				Signaled Target Abort Status (STAS)
11	RO	0b	Uncore	This bit is set when a Function completes a Posted or Non-Posted Request as a Completer Abort error. This applies to a Function with a Type 1 Configuration header when the Completer Abort was generated by its Primary Side. Reset Value of this bit is 0b.
				Not Applicable or Implemented. Hardwired to 0. The concept of a target abort does not exist on primary side of this device.
10:9	RO	00b	Uncore	DEVSELB Timing (DEVT) This device is not the subtractively decoded device on bus 0. This bit field is therefore hardwired to 00 to indicate that the device uses the fastest possible decode. Does not apply to PCI Express and must be hardwired to 00b.
				Master Data Parity Error (PMDPE)
8	RW1C	Оb	Uncore	 This bit is set by a Requester (Primary Side for Type 1 Configuration Space header Function) if the Party Error Response bit in the Command register is 1b and either of the following two conditions occurs: Requester receives a Completion marked poisoned Requester poisons a write Request If the Parity Error Response bit is 0b, this bit is never set.
				This bit will be set only for completions of requests encountering ECC error in DRAM.
				Poisoned peer-to-peer posted forwarded will not set this bit. They are reported at the receiving port.
7	RO	0b	Uncore	Fast Back-to-Back (FB2B) Not Applicable or Implemented. Hardwired to 0.
6	RO	0h		Reserved (RSVD)
5	RO	0b	Uncore	66/60MHz capability (CAP66) Not Applicable or Implemented. Hardwired to 0.
4	RO	1b	Uncore	Capabilities List (CAPL) Indicates that a capabilities list is present. Hardwired to 1.
3	RO-V	Ob	Uncore	INTx Status (INTAS) This bit indicates that an interrupt message is pending internally to the device. Only PME and Hot-plug sources feed into this status bit (not PCI INTA-INTD assert and deassert messages). The INTA Assertion Disable bit, PCICMD1[10], has no effect on this bit.
				 Note: INTA emulation interrupts received across the link are not reflected in this bit. Note: PCI Express* Hot-Plug is not supported on the processor.
2:0	RO	0h		Reserved (RSVD)

2.6.5 **RID**—Revision Identification Register

This register contains the revision number of the processor root port. These bits are read only and writes to this register have no effect.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/1/0-2/PCI 8h 00h RO-FW 8 bits		
Bit	Access	Reset Value	RST/ PWR	Description
7:0	RO-FW	0h	Uncore	Revision Identification Number (RID) This is an 8-bit value that indicates the revision identification number for the root port. Refer to the <i>Desktop 3rd Generation</i> <i>Intel</i> [®] <i>Core</i> ^{m} <i>Processor Family Specification Update</i> for the value of the RID register.

2.6.6 CC-Class Code Register

This register identifies the basic function of the device, a more specific sub-class, and a register-specific programming interface.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/1/0-2/PCI 9-Bh 060400h RO 24 bits		
Bit	Access	Reset Value	RST/ PWR	Description
23:16	RO	06h	Uncore	Base Class Code (BCC) This field indicates the base class code for this device. This code has the value 06h indicating a Bridge device.
15:8	RO	04h	Uncore	Sub-Class Code (SUBCC) This field indicates the sub-class code for this device. The code is 04h indicating a PCI to PCI Bridge.
7:0	RO	00h	Uncore	Programming Interface (PI) This field indicates the programming interface of this device. This value does not specify a particular register set layout and provides no practical use for this device.

2.6.7 CL—Cache Line Size Register

B/D/F/Type:0/1/0-2/PCIAddress Offset:ChReset Value:00hAccess:RWSize:8 bits		l/0-2/PCI n its		
Bit	Access	Reset Value	RST/ PWR	Description
7:0	RW	00h	Uncore	Cache Line Size (CLS) Implemented by PCI Express devices as a read-write field for legacy compatibility purposes but has no impact on any PCI Express device functionality.

2.6.8 HDR—Header Type Register

This register identifies the header layout of the configuration space. No physical register exists at this location.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/1/0-2/PCI Eh 81h RO 8 bits		
Bit	Access	Reset Value	RST/ PWR	Description
7:0	RO	81h	Uncore	Header Type Register (HDR) Device 1 returns 81h to indicate that this is a multi function device with bridge header layout. Device 6 returns 01h to indicate that this is a single function device with bridge header layout.

2.6.9 PBUSN—Primary Bus Number Register

This register identifies that this "virtual" Host-PCI Express* bridge is connected to PCI bus 0.

B/D/F/Type:0/1/0Address Offset:18hReset Value:00hAccess:ROSize:8 bits		l/0-2/PCI 1 its		
Bit	Access	Reset Value	RST/ PWR	Description
7:0	RO	00h	Uncore	Primary Bus Number (BUSN) Configuration software typically programs this field with the number of the bus on the primary side of the bridge. Since the processor root port is an internal device and its primary bus is always 0, these bits are read only and are hardwired to 0.

2.6.10 SBUSN—Secondary Bus Number Register

This register identifies the bus number assigned to the second bus side of the "virtual" bridge; that is, to PCI Express-G. This number is programmed by the PCI configuration software to allow mapping of configuration cycles to PCI Express-G.

B/D/F/Type:0/1/0-2/PCIAddress Offset:19hReset Value:00hAccess:RWSize:8 bits		l/0-2/PCI n its		
Bit	Access	Reset Value	RST/ PWR	Description
7:0	RW	00h	Uncore	Secondary Bus Number (BUSN) This field is programmed by configuration software with the bus number assigned to PCI Express-G.

2.6.11 SUBUSN—Subordinate Bus Number Register

This register identifies the subordinate bus (if any) that resides at the level below PCI Express-G. This number is programmed by the PCI configuration software to allow mapping of configuration cycles to PCI Express-G.

B/D/F/Type:0/1/0-2/PCAddress Offset:1AhReset Value:00hAccess:RWSize:8 bits		./0-2/PCI 1 its		
Bit	Access	Reset Value	RST/ PWR	Description
7:0	RW	00h	Uncore	Subordinate Bus Number (BUSN) This register is programmed by configuration software with the number of the highest subordinate bus that lies behind the processor root port bridge. When only a single PCI device resides on the PCI Express-G segment, this register will contain the same value as the SBUSN1 register.

2.6.12 IOBASE—I/O Base Address Register

This register controls the processor to PCI Express-G I/O access routing based on the following formula:

 $IO_BASE \leq address \leq IO_LIMIT$

Only upper 4 bits are programmable. For the purpose of address decode address bits A[11:0] are treated as 0. Thus, the bottom of the defined I/O address range will be aligned to a 4 KB boundary.

B/D/F/Type:OAddress Offset:1Reset Value:FAccess:RSize:8BIOS Optimal Default0		0/1 1CH FOH RW 8 b fault Oh	its	
Bit	Access	Reset Value	RST/ PWR	Description
7:4	RW	Fh	Uncore	I/O Address Base (IOBASE) This field corresponds to A[15:12] of the I/O addresses passed by the root port to PCI Express-G.
3:0	RO	0h		Reserved (RSVD)

2.6.13 IOLIMIT-I/O Limit Address Register

This register controls the processor to PCI Express-G I/O access routing based on the following formula:

 $IO_BASE \leq address \leq IO_LIMIT$

Only upper 4 bits are programmable. For the purpose of address decode, address bits A[11:0] are assumed to be FFFh. Thus, the top of the defined I/O address range will be at the top of a 4 KB aligned address block.

B/D/F/Type:0/1/0-2/PCIAddress Offset:1DhReset Value:00hAccess:RWSize:8 bitsBIOS Optimal Default0h			./0-2/PCI I its	
Bit	Access	Reset Value	RST/ PWR	Description
7:4	RW	0h	Uncore	I/O Address Limit (IOLIMIT) This field corresponds to A[15:12] of the I/O address limit of the root port. Devices between this upper limit and IOBASE1 will be passed to the PCI Express hierarchy associated with this device.
3:0	RO	0h		Reserved (RSVD)

2.6.14 SSTS—Secondary Status Register

SSTS is a 16-bit status register that reports the occurrence of error conditions associated with secondary side (that is, PCI Express-G side) of the "virtual" PCI-PCI bridge embedded within the processor.

B/D/F/ Address Reset V Access: Size: BIOS Op	Type: 5 Offset: alue: otimal De	0/1 1E- 000 RW 16 fault 00f	L/0-2/PCI -1Fh O0h (1C, RO bits 1	
Bit	Access	Reset Value	RST/ PWR	Description
15	RW1C	0b	Uncore	Detected Parity Error (DPE) This bit is set by the Secondary Side for a Type 1 Configuration Space header device whenever it receives a Poisoned TLP, regardless of the state of the Parity Error Response Enable bit in the Bridge Control Register.
14	RW1C	0b	Uncore	Received System Error (RSE) This bit is set when the Secondary Side for a Type 1 configuration space header device receives an ERR_FATAL or ERR_NONFATAL.
13	RW1C	0b	Uncore	Received Master Abort (RMA) This bit is set when the Secondary Side for Type 1 Configuration Space Header Device (for requests initiated by the Type 1 Header Device itself) receives a Completion with Unsupported Request Completion Status.
12	RW1C	Ob	Uncore	Received Target Abort (RTA) This bit is set when the Secondary Side for Type 1 Configuration Space Header Device (for requests initiated by the Type 1 Header Device itself) receives a Completion with Completer Abort Completion Status.
11	RO	0b	Uncore	Signaled Target Abort (STA) Not Applicable or Implemented. Hardwired to 0. The processor does not generate Target Aborts (The root port will never complete a request using the Completer Abort Completion status). UR detected inside the processor (such as in iMPH/MC will be reported in primary side status)
10:9	RO	00b	Uncore	DEVSELB Timing (DEVT) Not Applicable or Implemented. Hardwired to 0.
8	RW1C	0b	Uncore	Master Data Parity Error (SMDPE) When set indicates that the processor received across the link (upstream) a Read Data Completion Poisoned TLP (EP=1). This bit can only be set when the Parity Error Enable bit in the Bridge Control register is set.
7	RO	0b	Uncore	Fast Back-to-Back (FB2B) Not Applicable or Implemented. Hardwired to 0.
6	RO	0h		Reserved (RSVD)
5	RO	0b	Uncore	66/60 MHz capability (CAP66) Not Applicable or Implemented. Hardwired to 0.
4:0	RO	0h		Reserved (RSVD)

2.6.15 MBASE—Memory Base Address Register

This register controls the processor to PCI Express-G non-prefetchable memory access routing based on the following formula:

 $\mathsf{MEMORY_BASE} \leq \mathsf{address} \leq \mathsf{MEMORY_LIMIT}$

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32 bit address. The bottom 4 bits of this register are read-only and return zeroes when read. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory address range will be aligned to a 1 MB boundary.

B/D/F/ Address Reset Va Access: Size: BIOS Op	B/D/F/Type:0/1/0-2/PCIAddress Offset:20-21hReset Value:FFF0hAccess:RWSize:16 bitsBIOS Optimal Default0h		/0-2/PCI 21h 0h bits	
Bit	Access	Reset Value	RST/ PWR	Description
15:4	RW	FFFh	Uncore	Memory Address Base (MBASE) This field corresponds to A[31:20] of the lower limit of the memory range that will be passed to PCI Express-G.
3:0	RO	0h		Reserved (RSVD)

2.6.16 MLIMIT—Memory Limit Address Register

This register controls the processor to PCI Express-G non-prefetchable memory access routing based on the following formula:

MEMORY_BASE < address < MEMORY_LIMIT

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32 bit address. The bottom 4 bits of this register are read-only and return zeroes when read. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined memory address range will be at the top of a 1 MB aligned memory block.

- **Note:** Memory range covered by MBASE and MLIMIT registers are used to map nonprefetchable PCI Express-G address ranges (typically where control/status memorymapped I/O data structures of the graphics controller will reside) and PMBASE and PMLIMIT are used to map prefetchable address ranges (typically graphics local memory). This segregation allows application of USWC space attribute to be performed in a true plug-and-play manner to the prefetchable address range for improved processor-PCI Express memory access performance.
- **Note:** Configuration software is responsible for programming all address range registers (prefetchable, non-prefetchable) with the values that provide exclusive address ranges; that is, prevent overlap with each other and/or with the ranges covered with the main memory. There is no provision in the processor hardware to enforce prevention of overlap and operations of the system in the case of overlap are not ensured.

B/D/F/Type:0/1/0-2/PCIAddress Offset:22-23hReset Value:0000hAccess:RWSize:16 bitsBIOS Optimal Default0h			./0-2/PCI -23h 10h bits	
Bit	Access	Reset Value	RST/ PWR	Description
15:4	RW	000h	Uncore	Memory Address Limit (MLIMIT) This field corresponds to A[31:20] of the upper limit of the address range passed to PCI Express-G.
3:0	RO	0h		Reserved (RSVD)

2.6.17 PMBASE—Prefetchable Memory Base Address Register

This register in conjunction with the corresponding Upper Base Address register controls the processor to PCI Express-G prefetchable memory access routing based on the following formula:

 $\mathsf{PREFETCHABLE_MEMORY_BASE} \leq \mathsf{address} \leq \mathsf{PREFETCHABLE_MEMORY_LIMIT}$

The upper 12 bits of this register are read/write and correspond to address bits A[31:20] of the 40-bit address. The lower 8 bits of the Upper Base Address register are read/write and correspond to address bits A[39:32] of the 40-bit address. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory address range will be aligned to a 1 MB boundary.

B/D/F/Type:0/Address Offset:24Reset Value:FFIAccess:ROSize:16		/0-2/PCI -25h 1h RW bits		
Bit	Access	Reset Value	RST/ PWR	Description
15:4	RW	FFFh	Uncore	Prefetchable Memory Base Address (PMBASE) This field corresponds to A[31:20] of the lower limit of the memory range that will be passed to PCI Express-G.
3:0	RO	1h	Uncore	64-bit Address Support (AS64) This field indicates that the upper 32 bits of the prefetchable memory region base address are contained in the Prefetchable Memory base Upper Address register at 28h.

2.6.18 PMLIMIT—Prefetchable Memory Limit Address Register

This register, in conjunction with the corresponding Upper Limit Address register, controls the processor to PCI Express-G prefetchable memory access routing based on the following formula:

 $\mathsf{PREFETCHABLE_MEMORY_BASE} \leq \mathsf{address} \leq \mathsf{PREFETCHABLE_MEMORY_LIMIT}$

The upper 12 bits of this register are read/write and correspond to address bits A[31:20] of the 40-bit address. The lower 8 bits of the Upper Limit Address register are read/write and correspond to address bits A[39:32] of the 40-bit address. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined memory address range will be at the top of a 1 MB aligned memory block.

Note: Prefetchable memory range is supported to allow segregation by the configuration software between the memory ranges that must be defined as UC and the ones that can be designated as a USWC (that is, prefetchable) from the processor perspective.

B/D/F/ Address Reset Va Access: Size:	B/D/F/Type:0/1/Address Offset:26-2Reset Value:0001Access:RW, ISize:16 bi		./0-2/PCI -27h 11h , RO bits	
Bit	Access	Reset Value	RST/ PWR	Description
15:4	RW	000h	Uncore	Prefetchable Memory Address Limit (PMLIMIT) This field corresponds to A[31:20] of the upper limit of the address range passed to PCI Express* graphics.
3:0	RO	1h	Uncore	64-bit Address Support (AS64B) This field indicates that the upper 32 bits of the prefetchable memory region limit address are contained in the Prefetchable Memory Base Limit Address register at 2Ch.

2.6.19 PMBASEU—Prefetchable Memory Base Address Upper Register

The functionality associated with this register is present in the PEG design implementation. This register in conjunction with the corresponding Upper Base Address register controls the processor to PCI Express-G prefetchable memory access routing based on the following formula:

 $\mathsf{PREFETCHABLE_MEMORY_BASE} \leq \mathsf{address} \leq \mathsf{PREFETCHABLE_MEMORY_LIMIT}$

The upper 12 bits of this register are read/write and correspond to address bits A[31:20] of the 39-bit address. The lower 7 bits of the Upper Base Address register are read/write and correspond to address bits A[38:32] of the 39-bit address. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory address range will be aligned to a 1 MB boundary.

B/D/F/ Address Reset V Access: Size:	B/D/F/Type: 0/1/0-2/PCI Address Offset: 28-2Bh Reset Value: 00000000h Access: RW Size: 32 bits		1/0-2/PC -2Bh 0000000h V bits	I
Bit	Access	Reset Value	RST/ PWR	Description
31:0	RW	0000000 0h	Uncore	Prefetchable Memory Base Address (PMBASEU) This field corresponds to A[63:32] of the lower limit of the prefetchable memory range that will be passed to PCI Express-G.

2.6.20 PMLIMITU—Prefetchable Memory Limit Address Upper Register

The functionality associated with this register is present in the PEG design implementation.

This register in conjunction with the corresponding Upper Limit Address register controls the processor to PCI Express-G prefetchable memory access routing based on the following formula:

PREFETCHABLE_MEMORY_BASE ≤ address ≤ PREFETCHABLE_MEMORY_LIMIT

The upper 12 bits of this register are read/write and correspond to address bits A[31:20] of the 39-bit address. The lower 7 bits of the Upper Limit Address register are read/write and correspond to address bits A[38:32] of the 39-bit address. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined memory address range will be at the top of a 1 MB aligned memory block.

Note: Prefetchable memory range is supported to allow segregation by the configuration software between the memory ranges that must be defined as UC and the ones that can be designated as a USWC (that is, prefetchable) from the processor perspective.

B/D/F/Type:0/1/0-2/PCIAddress Offset:2C-2FhReset Value:00000000hAccess:RWSize:32 bits		/0–2/PCI 2Fh 00000h its		
Bit	Access	Reset Value	RST/ PWR	Description
31:0	RW	00000000h	Uncore	Prefetchable Memory Address Limit (PMLIMITU) This field corresponds to A[63:32] of the upper limit of the prefetchable Memory range that will be passed to PCI Express- G.

2.6.21 CAPPTR—Capabilities Pointer Register

The capabilities pointer provides the address offset to the location of the first entry in this device's linked list of capabilities.

B/D/F/Type:0/1/0-2/PCIAddress Offset:34hReset Value:88hAccess:ROSize:8 bits		l/0-2/PCI 1 1 its		
Bit	Access	Reset Value	RST/ PWR	Description
7:0	RO	88h	Uncore	First Capability (CAPPTR1) The first capability in the list is the Subsystem ID and Subsystem Vendor ID Capability.

2.6.22 INTRLINE—Interrupt Line Register

This register contains interrupt line routing information. The device itself does not use this value; rather, it is used by device drivers and operating systems to determine priority and vector information.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/1/0-2/PCI 3Ch 00h RW 8 bits		
Bit	Access	Reset Value	RST/ PWR	Description
7:0	RW	00h	Uncore	Interrupt Connection (INTCON) This field is used to communicate interrupt line routing information. BIOS Requirement: POST software writes the routing information into this register as it initializes and configures the system. The value indicates to which input of the system interrupt controller this device's interrupt pin is connected.

2.6.23 INTRPIN—Interrupt Pin Register

This register specifies which interrupt pin this device uses.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/1/0-2/PCI 3Dh 01h RW-0, RO 8 bits		
Bit	Access	Reset Value	RST/ PWR	Description
7:3	RO	00h	Uncore	Reserved (RSVD)
2:0	RW-O	1h	Uncore	Interrupt Pin (INTPIN) As a multifunction device, the PCI Express device may specify any INTx (x=A,B,C,D) as its interrupt pin. The Interrupt Pin register indicates which interrupt pin the device (or device function) uses. A value of 1 corresponds to INTA# (Default) A value of 2 corresponds to INTB# A value of 3 corresponds to INTC# A value of 4 corresponds to INTD# Devices (or device functions) that do not use an interrupt pin must put a 0 in this register. The values 05h through FFh are reserved. This register is write once. BIOS must set this register to select the INTx to be used by this root port.

2.6.24 BCTRL—Bridge Control Register

This register provides extensions to the PCICMD register that are specific to PCI-PCI bridges. The BCTRL provides additional control for the secondary interface (that is, PCI Express-G) as well as some bits that affect the overall behavior of the "virtual" Host-PCI Express bridge embedded within the processor; such as VGA compatible address ranges mapping.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/1 3E- 000 RO, 16 fault Oh	L/0–2/PCI -3Fh D0h , RW bits	
Bit	Access	Reset Value	RST/ PWR	Description
15:12	RO	0h		Reserved (RSVD)
11	RO	0b	Uncore	Discard Timer SERR# Enable (DTSERRE) Not Applicable or Implemented. Hardwired to 0.
10	RO	0b	Uncore	Discard Timer Status (DTSTS) Not Applicable or Implemented. Hardwired to 0.
9	RO	0b	Uncore	Secondary Discard Timer (SDT) Not Applicable or Implemented. Hardwired to 0.
8	RO	0b	Uncore	Primary Discard Timer (PDT) Not Applicable or Implemented. Hardwired to 0.
7	RO	0b	Uncore	Fast Back-to-Back Enable (FB2BEN) Not Applicable or Implemented. Hardwired to 0.
6	RW	0b	Uncore	Secondary Bus Reset (SRESET) Setting this bit triggers a hot reset on the corresponding PCI Express Port. This will force the LTSSM to transition to the Hot Reset state (using Recovery) from L0, L0s, or L1 states.
5	RO	0b	Uncore	Master Abort Mode (MAMODE) Does not apply to PCI Express. Hardwired to 0.
4	RW	Оb	Uncore	 VGA 16-bit Decode (VGA16D) Enables the PCI-to-PCI bridge to provide 16-bit decoding of VGA I/O address precluding the decoding of alias addresses every 1 KB. This bit only has meaning if bit 3 (VGA Enable) of this register is also set to 1, enabling VGA I/O decoding and forwarding by the bridge. 0 = Execute 10-bit address decodes on VGA I/O accesses. 1 = Execute 16-bit address decodes on VGA I/O accesses.
3	RW	0b	Uncore	VGA Enable (VGAEN) This bit controls the routing of processor initiated transactions targeting VGA compatible I/O and memory address ranges. See the VGAEN/MDAP table in Device 0, offset 97h[0].

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Defaul		0/1 3E- 000 RO, 16 fault Oh	./0-2/PCI ·3Fh O0h RW bits	
Bit	Access	Reset Value	RST/ PWR	Description
2	RW	ОЬ	Uncore	 ISA Enable (ISAEN) Needed to exclude legacy resource decode to route ISA resources to legacy decode path. Modifies the response by the root port to an I/O access issued by the processor that target ISA I/O addresses. This applies only to I/O addresses that are enabled by the IOBASE and IOLIMIT registers. 0 = All addresses defined by the IOBASE and IOLIMIT for processor I/O transactions will be mapped to PCI Express-G. 1 = The root port will not forward to PCI Express-G any I/O transactions addresses are within the range defined by the IOBASE and IOLIMIT registers.
1	RW	0b	Uncore	 SERR Enable (SERREN) 0 = No forwarding of error messages from secondary side to primary side that could result in an SERR. 1 = ERR_COR, ERR_NONFATAL, and ERR_FATAL messages result in SERR message when individually enabled by the Root Control register.
0	RW	Ob	Uncore	 Parity Error Response Enable (PEREN) This bit controls whether or not the Master Data Parity Error bit in the Secondary Status register is set when the root port receives across the link (upstream) a Read Data Completion Poisoned TLP. 0 = Master Data Parity Error bit in Secondary Status register can NOT be set. 1 = Master Data Parity Error bit in Secondary Status register CAN be set.

2.6.25 PM_CAPID—Power Management Capabilities Register

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/1/0-2/PCI 80-83h C8039001h RO, RO-V 32 bits		
Bit	Access	Reset Value	RST/ PWR	Description
31:27	RO	19h	Uncore	PME Support (PMES) This field indicates the power states in which this device may indicate PME wake using PCI Express messaging. D0, D3hot, and D3cold. This device is not required to do anything to support D3hot and D3cold; it simply must report that those states are supported. Refer to the <i>PCI Power Management 1.1 specification</i> for encoding explanation and other power management details.
26	RO	0b	Uncore	D2 Power State Support (D2PSS) Hardwired to 0 to indicate that the D2 power management state is NOT supported.
25	RO	0b	Uncore	D1 Power State Support (D1PSS) Hardwired to 0 to indicate that the D1 power management state is NOT supported.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/1/0-2/PCI 80-83h C8039001h RO, RO-V 32 bits		
Bit	Access	Reset Value	RST/ PWR	Description
24:22	RO	000b	Uncore	Auxiliary Current (AUXC) Hardwired to 0 to indicate that there are no 3.3Vaux auxiliary current requirements.
21	RO	0b	Uncore	Device Specific Initialization (DSI) Hardwired to 0 to indicate that special initialization of this device is NOT required before generic class device driver is to use it.
20	RO	0b	Uncore	Auxiliary Power Source (APS) Hardwired to 0.
19	RO	0b	Uncore	PME Clock (PMECLK) Hardwired to 0 to indicate this device does NOT support PME# generation.
18:16	RO	011b	Uncore	PCI PM CAP Version (PCIPMCV) A value of 011b indicates that this function complies with Revision 1.2 of the PCI Power Management Interface Specification. (Was previously hardwired to 02h to indicate there are 4 bytes of power management registers implemented and that this device complies with revision 1.1 of the PCI Power Management Interface Specification.)
15:8	RO-V	90h	Uncore	Pointer to Next Capability (PNC) This contains a pointer to the next item in the capabilities list. If MSICH (CAPL[0] @ 7Fh) is 0, then the next item in the capabilities list is the Message Signaled Interrupts (MSI) capability at 90h. If MSICH (CAPL[0] @ 7Fh) is 1, then the next item in the capabilities list is the PCI Express capability at A0h.
7:0	RO	01h	Uncore	Capability ID (CID) Value of 01h identifies this linked list item (capability structure) as being for PCI Power Management registers.

2.6.26 PM_CS-Power Management Control/Status Register

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/1 84- 000 RO, 32 fault 000	1/0-2/PCI -87h 000008h , RW bits 0000h	
Bit	Access	Reset Value	RST/ PWR	Description
31:16	RO	0h		Reserved (RSVD)
15	RO	0b	Uncore	PME Status (PMESTS) This bit indicates that this device does not support PME# generation from D3cold.
14:13	RO	00b	Uncore	Data Scale (DSCALE) This field indicates that this device does not support the power management data register.
12:9	RO	0h	Uncore	Data Select (DSEL) This field indicates that this device does not support the power management data register.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/1 84- 000 RO, 32 fault 000	./0-2/PCI •87h 000008h RW bits 0000h	
Bit	Access	Reset Value	RST/ PWR	Description
8	RW	Оb	Uncore	<pre>PME Enable (PMEE) This bit indicates that this device does not generate PME# assertion from any D-state. 0 = PME# generation not possible from any D State 1 = PME# generation enabled from any D State The setting of this bit has no effect on hardware. See PM_CAP[15:11]</pre>
7:4	RO	0h		Reserved (RSVD)
3	RO	1b	Uncore	 No Soft Reset (NSR) 1 = When set to 1 this bit indicates that the device is transitioning from D3hot to D0 because the power state commands do not perform an internal reset. Configuration context is preserved. Upon transition no additional operating system intervention is required to preserve configuration context beyond writing the power state bits. 0 = When clear the devices do not perform an internal reset upon transitioning from D3hot to D0 using software control of the power state bits. Regardless of this bit, the devices that transition from a D3hot to D0 by a system or bus segment reset will return to the device state D0 uninitialized with only PME context preserved if PME is supported and enabled.
2	RO	0h		Reserved (RSVD)
1:0	RW	00Ь	Uncore	Power State (PS) This field indicates the current power state of this device and can be used to set the device into a new power state. If software attempts to write an unsupported state to this field, write operation must complete normally on the bus; but the data is discarded and no state change occurs. 00 = D0 01 = D1 (Not supported in this device.) 10 = D2 (Not supported in this device.) 11 = D3 Support of D3cold does not require any special action. While in the D3hot state, this device can only act as the target of PCI configuration transactions (for power management control). This device also cannot generate interrupts or respond to MMR cycles in the D3 state. The device must return to the D0 state in order to be fully-functional. When the Power State is other than D0, the bridge will Master Abort (that is, not claim) any downstream cycles (with exception of type 0 configuration cycles). Consequently, these unclaimed cycles will go down DMI and come back up as Unsupported Requests, which the processor logs as Master Aborts in Device 0 PCITS[13].

2.6.27 SS_CAPID—Subsystem ID and Vendor ID Capabilities Register

This capability is used to uniquely identify the subsystem where the PCI device resides. Because this device is an integrated part of the system and not an add-in device, it is anticipated that this capability will never be used. However, it is necessary because Microsoft will test for its presence.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default			l/0-2/PCI -8Bh 00800Dh bits 00h	
Bit	Access	Reset Value	RST/ PWR	Description
31:16	RO	0h		Reserved (RSVD)
15:8	RO	80h	Uncore	Pointer to Next Capability (PNC) This field contains a pointer to the next item in the capabilities list which is the PCI Power Management capability.
7:0	RO	0Dh	Uncore	Capability ID (CID) Value of 0Dh identifies this linked list item (capability structure) as being for SSID/SSVID registers in a PCI-to-PCI Bridge.

2.6.28 SS—Subsystem ID and Subsystem Vendor ID Register

System BIOS can be used as the mechanism for loading the SSID/SVID values. These values must be preserved through power management transitions and a hardware reset.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/1/0-2/PCI 8C-8Fh 00008086h RW-0 32 bits		
Bit	Access	Reset Value	RST/ PWR	Description
31:16	RW-O	0000h	Uncore	Subsystem ID (SSID) This field identifies the particular subsystem and is assigned by the vendor.
15:0	RW-O	8086h	Uncore	Subsystem Vendor ID (SSVID) This field identifies the manufacturer of the subsystem and is the same as the vendor ID which is assigned by the PCI Special Interest Group.

2.6.29 MSI_CAPID—Message Signaled Interrupts Capability ID Register

When a device supports MSI it can generate an interrupt request to the processor by writing a predefined data item (a message) to a predefined memory address.

The reporting of the existence of this capability can be disabled by setting MSICH (CAPL[0] @ 7Fh). In that case walking this linked list will skip this capability and instead go directly from the PCI PM capability to the PCI Express capability.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/1/0-2/PCI 90-91h A005h RO 16 bits		
Bit	Access	Reset Value	RST/ PWR	Description
15:8	RO	A0h	Uncore	Pointer to Next Capability (PNC) This field contains a pointer to the next item in the capabilities list which is the PCI Express capability.
7:0	RO	05h	Uncore	Capability ID (CID) Value of 05h identifies this linked list item (capability structure) as being for MSI registers.

2.6.30 MC–Message Control Register

System software can modify bits in this register, but the device is prohibited from doing so.

If the device writes the same message multiple times, only one of those messages is ensured to be serviced. If all of them must be serviced, the device must not generate the same message again until the driver services the earlier one.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Defa		0/1/0-2/PCI 92-93h 0000h RW, RO 16 bits fault 00h		
Bit	Access	Reset Value	RST/ PWR	Description
15:8	RO	0h		Reserved (RSVD)
7	RO	0b	Uncore	64-bit Address Capable (B64AC) Hardwired to 0 to indicate that the function does not implement the upper 32 bits of the Message Address register and is incapable of generating a 64-bit memory address.
6:4	RW	000b	Uncore	Multiple Message Enable (MME) System software programs this field to indicate the actual number of messages allocated to this device. This number will be equal to or less than the number actually requested. The encoding is the same as for the MMC field below.
3:1	RO	000Ь	Uncore	Multiple Message Capable (MMC)System software reads this field to determine the number of messages being requested by this device.000 = 1 Message RequestedAll of the following are reserved in this implementation:001 = 2010 = 4011 = 8100 = 16101 = 32110 = Reserved111 = Reserved
0	RW	0b	Uncore	 MSI Enable (MSIEN) This bit controls the ability of this device to generate MSIs. 0 = MSI will not be generated. 1 = MSI will be generated when we receive PME messages. INTA will not be generated and INTA Status (PCISTS1[3]) will not be set.

2.6.31 MA-Message Address Register

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/1/0-2/PCI 94-97h 00000000h RW, RO 32 bits		
Bit	Access	Reset Value	RST/ PWR	Description
31:2	RW	00000000h	Uncore	Message Address (MA) Used by system software to assign an MSI address to the device. The device handles an MSI by writing the padded contents of the MD register to this address.
1:0	RO	00b	Uncore	Force DWord Align (FDWA) Hardwired to 0 so that addresses assigned by system software are always aligned on a DWord address boundary.

2.6.32 MD-Message Data Register

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/1/0-2/PCI 98-99h 0000h RW 16 bits		
Bit	Access	Reset Value	RST/ PWR	Description
15:0	RW	0000h	Uncore	Message Data (MD) Base message data pattern assigned by system software and used to handle an MSI from the device. When the device must generate an interrupt request, it writes a
				32-bit value to the memory address specified in the MA register. The upper 16 bits are always set to 0. The lower 16 bits are supplied by this register.

2.6.33 **PEG_CAPL-PCI Express-G Capability List Register**

This register enumerates the PCI Express* capability structure.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/1/0-2/PCI A0-A1h 0010h RO 16 bits		
Bit	Access	Reset Value	RST/ PWR	Description
15:8	RO	00h	Uncore	Pointer to Next Capability (PNC) This value terminates the capabilities list. The Virtual Channel capability and any other PCI Express specific capabilities that are reported using this mechanism are in a separate capabilities list located entirely within PCI Express Extended Configuration Space.
7:0	RO	10h	Uncore	Capability ID (CID) This field identifies this linked list item (capability structure) as being for PCI Express registers.

2.6.34 **PEG_CAP-PCI Express-G Capabilities Register**

This register indicates PCI Express* device capabilities.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Def		0/1/0-2/PCI A2-A3h 0142h RO, RW-O 16 bits fault 0h		
Bit	Access	Reset Value	RST/ PWR	Description
15:14	RO	0h		Reserved (RSVD)
13:9	RO	00h	Uncore	Interrupt Message Number (IMN) Not Applicable or Implemented. Hardwired to 0.
8	RW-O	1b	Uncore	 Slot Implemented (SI) 0 = The PCI Express Link associated with this port is connected to an integrated component or is disabled. 1 = The PCI Express Link associated with this port is connected to a slot. BIOS Requirement: This field must be initialized appropriately if a slot connection is not implemented.
7:4	RO	4h	Uncore	Device/Port Type (DPT) Hardwired to 4h to indicate root port of PCI Express Root Complex.
3:0	RO	2h	Uncore	PCI Express Capability Version (PCIECV) Hardwired to 2h to indicate compliance to the PCI Express Capabilities Register Expansion ECN.

2.6.35 DCAP–Device Capabilities Register

This register indicates PCI Express* device capabilities.

B/D/F/Type:0/Address Offset:A4Reset Value:00Access:RCSize:32BIOS Optimal Default00		L/0-2/PCI -A7h 008000h , RW-O bits 00000h		
Bit	Access	Reset Value	RST/ PWR	Description
31:16	RO	0h		Reserved (RSVD)
15	RO	1b	Uncore	Role Based Error Reporting (RBER) This bit indicates that this device implements the functionality defined in the Error Reporting ECN as required by the PCI Express 1.1 specification.
14:6	RO	0h		Reserved (RSVD)
5	RO	0b	Uncore	Extended Tag Field Supported (ETFS) Hardwired to indicate support for 5-bit Tags as a Requestor.
4:3	RO	00b	Uncore	Phantom Functions Supported (PFS) Not Applicable or Implemented. Hardwired to 0.
2:0	RW-O	000b	Uncore	Max Payload Size (MPS) Default indicates 128B maximum supported payload for Transaction Layer Packets (TLP).

2.6.36 DCTL—Device Control Register

This register provides control for PCI Express* device specific capabilities.

The error reporting enable bits are in reference to errors detected by this device, not error messages received across the link. The reporting of error messages (ERR_CORR, ERR_NONFATAL, ERR_FATAL) received by Root Port is controlled exclusively by Root Port Command Register.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Defaul		0/1 A8- 002 R0, 16 fault Oh	L/O-2/PCI -A9h 20h , RW bits	
Bit	Access	Reset Value	RST/ PWR	Description
15	RO	0h		Reserved (RSVD)
14:12	RO	000b	Uncore	Reserved for Max Read Request Size (MRRS)
11	RO	0b	Uncore	Reserved for Enable No Snoop (NSE)
10:5	RO	0h		Reserved (RSVD)
4	RO	0b	Uncore	Reserved for Enable Relaxed Ordering (ROE)
3	RW	Ob	Uncore	Unsupported Request Reporting Enable (URRE) When set, this bit allows signaling ERR_NONFATAL, ERR_FATAL, or ERR_CORR to the Root Control register when detecting an unmasked Unsupported Request (UR). An ERR_CORR is signaled when an unmasked Advisory Non-Fatal UR is received. An ERR_FATAL or ERR_NONFATAL is sent to the Root Control register when an uncorrectable non-Advisory UR is received with the severity bit set in the Uncorrectable Error Severity register.
2	RW	0b	Uncore	Fatal Error Reporting Enable (FERE) When set, this bit enables signaling of ERR_FATAL to the Root Control register due to internally detected errors or error messages received across the link. Other bits also control the full scope of related error reporting.
1	RW	0b	Uncore	Non-Fatal Error Reporting Enable (NERE) When set, this bit enables signaling of ERR_NONFATAL to the Root Control register due to internally detected errors or error messages received across the link. Other bits also control the full scope of related error reporting.
0	RW	0b	Uncore	Correctable Error Reporting Enable (CERE) When set, this bit enables signaling of ERR_CORR to the Root Control register due to internally detected errors or error messages received across the link. Other bits also control the full scope of related error reporting.

2.6.37 DSTS—Device Status Register

This register reflects status corresponding to controls in the Device Control register. The error reporting bits are in reference to errors detected by this device, not errors messages received across the link.

B/D/F/Type:0/1/0-2/Address Offset:AA-ABhReset Value:0000hAccess:RW1C, ROSize:16 bitsBIOS Optimal Default000h			l/0-2/PCI -ABh O0h 11C, RO bits Dh	
Bit	Access	Reset Value	RST/ PWR	Description
15:6	RO	0h		Reserved (RSVD)
5	RO	Ob	Uncore	 Transactions Pending (TP) 0 = All pending transactions (including completions for any outstanding non-posted requests on any used virtual channel) have been completed. 1 = Indicates that the device has transaction(s) pending (including completions for any outstanding non-posted requests for all used Traffic Classes). Not Applicable or Implemented. Hardwired to 0.
4	RO	0h		Reserved (RSVD)
3	RW1C	Ob	Uncore	Unsupported Request Detected (URD) This bit indicates that the Function received an Unsupported Request. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register. For a multi-Function device, each Function indicates status of errors as perceived by the respective Function.
2	RW1C	0b	Uncore	Fatal Error Detected (FED) This bit indicates status of Fatal errors detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register. For a multi-Function device, each Function indicates status of errors as perceived by the respective Function.
1	RW1C	0b	Uncore	Non-Fatal Error Detected (NFED) This bit indicates status of Nonfatal errors detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register. For a multi-Function device, each Function indicates status of errors as perceived by the respective Function.
0	RW1C	0b	Uncore	Correctable Error Detected (CED) This bit indicates status of correctable errors detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register. For a multi-Function device, each Function indicates status of errors as perceived by the respective Function.

2.6.38 LCAP—Link Capabilities Register

B/D/F/ Address Reset Va Access: Size:	Type: Offset: alue:	0/1 AC- 026 RO, 32	/0-2/PCI -AFh 51CD03h RO-V, RW bits	-0, RW-0V
Bit	Access	Reset Value	RST/ PWR	Description
31:24	RO	02h	Uncore	Port Number (PN) This field indicates the PCI Express port number for the given PCI Express link. Matches the value in Element Self Description[31:24]. The value if this field differs between root ports 2h = Device 1 function 0 3h = Device 1 function 1 4h = Device 1 function 2 5h = Device 6 function 0
23	RO	0h		Reserved (RSVD)
22	RO	1b	Uncore	ASPM Optionality Compliance (AOC) This bit must be set to 1b in all Functions. Components implemented against certain earlier versions of this specification will have this bit set to 0b. Software is permitted to use the value of this bit to help determine whether to enable ASPM or whether to run ASPM compliance tests.
21	RO	1b	Uncore	Link Bandwidth Notification Capability (LBNC) A value of 1b indicates support for the Link Bandwidth Notification status and interrupt mechanisms. This capability is required for all Root Ports and Switch downstream ports supporting Links wider than x1 and/or multiple Link speeds. This field is not applicable and is reserved for Endpoint devices, PCI Express to PCI/PCI-X bridges, and Upstream Ports of Switches. Devices that do not implement the Link Bandwidth Notification capability must hardwire this bit to 0b.
20	RO	Оb	Uncore	Data Link Layer Link Active Reporting Capable (DLLLARC) For a Downstream Port, this bit must be set to 1b if the component supports the optional capability of reporting the DL_Active state of the Data Link Control and Management State Machine. For a hot-plug capable Downstream Port (as indicated by the Hot-Plug Capable field of the Slot Capabilities register), this bit must be set to 1b. For Upstream Ports and components that do not support this optional capability, this bit must be hardwired to 0b. Note: PCI Express* Hot-Plug is not supported on the processor.
19	RO	Ob	Uncore	Surprise Down Error Reporting Capable (SDERC) For a Downstream Port, this bit must be set to 1b if the component supports the optional capability of detecting and reporting a Surprise Down error condition. For Upstream Ports and components that do not support this optional capability, this bit must be hardwired to 0b.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/1/0-2/PCI AC-AFh 0261CD03h RO, RO-V, RW- 32 bits		-0, RW-0V
Bit	Access	Reset Value	RST/ PWR	Description
18	RO	Оb	Uncore	Clock Power Management (CPM) A value of 1b in this bit indicates that the component tolerates the removal of any reference clock(s) when the link is in the L1 and L2/3 Ready link states. A value of 0b indicates the component does not have this capability and that reference clock(s) must not be removed in these link states. This capability is applicable only in form factors that support "clock request" (CLKREQ#) capability. For a multi-function device, each function indicates its capability independently. Power Management configuration software must only permit reference clock removal if all functions of the multifunction device indicate a 1b in this bit.
17:15	RO	0h		Reserved (RSVD)
14:12	RO-V	100Ь	Uncore	LOS Exit Latency (LOSELAT) This field indicates the length of time this Port requires to complete the transition from LOs to LO. 000 = Less than 64 ns 001 = 64 ns to less than 128 ns 010 = 128 ns to less than 256 ns 011 = 256 ns to less than 512 ns 100 = 512 ns to less than 1 us 101 = 1 us to less than 2 us 110 = 2 us-4 us 111 = More than 4 us The actual value of this field depends on the common Clock Configuration bit (LCTL[6]) and the Common and Non-Common clock LOS Exit Latency values in LOSLAT (Offset 22Ch)
11:10	RW-O	11b	Uncore	Active State Link PM Support (ASLPMS) Root port supports ASPM LOs and L1.
9:0	RO	0h		Reserved (RSVD)

2.6.39 LCTL-Link Control Register

This register allows control of PCI Express* link.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/1 B0- 000 RW 16 fault 00f	L/0-2/PCI -B1h 00h 7, RO, RW-V bits 1	/
Bit	Access	Reset Value	RST/ PWR	Description
15:12	RO	0h		Reserved (RSVD)
11	RW	Оb	Uncore	Link Autonomous Bandwidth Interrupt Enable (LABIE) When set, this bit enables the generation of an interrupt to indicate that the Link Autonomous Bandwidth Status bit has been set. This bit is not applicable and is reserved for Endpoint devices, PCI Express to PCI/PCI-X bridges, and Upstream Ports of Switches. Devices that do not implement the Link Bandwidth Notification capability must hardwire this bit to 0b.
10	RW	0b	Uncore	Link Bandwidth Management Interrupt Enable (LBMIE) When set, this bit enables the generation of an interrupt to indicate that the Link Bandwidth Management Status bit has been set. This bit is not applicable and is reserved for Endpoint devices, PCI Express to PCI/PCI-X bridges, and Upstream Ports of Switches.
9	RW	0b	Uncore	Hardware Autonomous Width Disable (HAWD) When set, this bit disables hardware from changing the Link width for reasons other than attempting to correct unreliable Link operation by reducing Link width Devices that do not implement the ability autonomously to change Link width are permitted to hardwire this bit to 0b.
8	RO	ОЬ	Uncore	 Enable Clock Power Management (ECPM) Applicable only for form factors that support a "Clock Request" (CLKREQ#) mechanism, this enable functions as follows 0 = Clock power management is disabled and device must hold CLKREQ# signal low 1 = When this bit is set to 1 the device is permitted to use CLKREQ# signal to power manage link clock according to protocol defined in appropriate form factor specification. Reset Value of this field is 0b. Components that do not support Clock Power Management (as indicated by a 0b value in the Clock Power Management bit of the Link Capabilities Register) must hardwire this bit to 0b.
7	RW	ОЬ	Uncore	 Extended Synch (ES) 0 = Standard Fast Training Sequence (FTS). 1 = Forces the transmission of additional ordered sets when exiting the L0s state and when in the Recovery state. This mode provides external devices (such as, logic analyzers) monitoring the Link time to achieve bit and symbol lock before the link enters L0 and resumes communication. This is a test mode only and may cause other undesired side effects such as buffer overflows or underruns.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/1 B0- 000 RW 16 fault 001	L/0–2/PCI -B1h J0h 7, RO, RW-\ bits 1	,
Bit	Access	Reset Value	RST/ PWR	Description
6	RW	ОЬ	Uncore	 Common Clock Configuration (CCC) 0 = Indicates that this component and the component at the opposite end of this Link are operating with asynchronous reference clock. 1 = Indicates that this component and the component at the opposite end of this Link are operating with a distributed common reference clock. The state of this bit affects the L0s Exit Latency reported in LCAP[14:12] and the N_FTS value advertised during link training. See LOSLAT at offset 22Ch.
5	RW-V	Оb	Uncore	 Retrain Link (RL) 0 = Normal operation. 1 = Full Link retraining is initiated by directing the Physical Layer LTSSM from L0, L0s, or L1 states to the Recovery state. This bit always returns 0 when read. This bit is cleared automatically (no need to write a 0).
4	RO	Oh		 Link Disable (LD) 0 = Normal operation 1 = Link is disabled. Forces the LTSSM to transition to the Disabled state (using Recovery) from L0, L0s, or L1 states. Link retraining happens automatically on the 0 to 1 transtion, just like when coming out of reset. Writes to this bit are immediately reflected in the value read from the bit, regardless of actual Link state. After clearing this bit, software must honor timing requirements defined in the PCIe Specification, Section 6.6.1, with respect to the first Configuration Read following a Conventional Reset.
3	RO	0b	Uncore	Read Completion Boundary (RCB) Hardwired to 0 to indicate 64 byte.
2	RO	0h		Reserved (RSVD)
1:0	RW	00b	Uncore	Active State PM (ASPM) This field controls the level of ASPM (Active State Power Management) supported on the given PCI Express Link.

2.6.40 LSTS-Link Status Register

The register indicates PCI Express* link status.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/1 B2- 100 RW 16 fault Oh	L/0–2/PCI -B3h 01h (1C, RO-V, bits	RO
Bit	Access	Reset Value	RST/ PWR	Description
15	RW1C	0b	Uncore	Link Autonomous Bandwidth Status (LABWS) This bit is set to 1b by hardware to indicate that hardware has autonomously changed link speed or width, without the port transitioning through DL_Down status, for reasons other than to attempt to correct unreliable link operation.
				This bit must be set if the Physical Layer reports a speed or width change was initiated by the downstream component that was indicated as an autonomous change.
				Link Bandwidth Management Status (LBWMS)
				This bit is set to 1b by hardware to indicate that either of the following has occurred without the port transitioning through DL_Down status:
14	RW1C	0b	Uncore	 A link retraining initiated by a write of 1b to the Retrain Link bit has completed. Note: This bit is set following any write of 1b to the Retrain Link bit, including when the Link is in the process of retraining for some other reason.
				 Hardware has autonomously changed link speed or width to attempt to correct unreliable link operation, either through an LTSSM time-out or a higher level process.
				This bit must be set if the Physical Layer reports a speed or width change was initiated by the downstream component that was not indicated as an autonomous change.
				Data Link Layer Link Active (Optional) (DLLLA)
13	RO-V	0b	Uncore	This bit indicates the status of the Data Link Control and Management State Machine. It returns a 1b to indicate the DL_Active state, 0b otherwise.
				This bit must be implemented if the corresponding Data Link Layer Active Capability bit is implemented. Otherwise, this bit must be hardwired to 0b.
				Slot Clock Configuration (SCC)
12	DO	16	Uncore	0 = The device uses an independent clock irrespective of the
12	κυ	ID	Uncore	 1 = The device uses the same physical reference clock that the platform provides on the connector.
11	RO-V	0b	Uncore	Link Training (LTRN) When set, this bit indicates that the Physical Layer LTSSM is in the Configuration or Recovery state, or that 1b was written to the Retrain Link bit but Link training has not yet begun. Hardware clears this bit when the LTSSM exits the Configuration/Recovery state once Link training is complete.

B/D/F/ Address Reset Va Access: Size: BIOS Op	Type: Offset: alue: otimal Def	0/1 B2- 100 RW 16 fault Oh	L/0-2/PCI -B3h)1h '1C, RO-V, bits	RO
Bit	Access	Reset Value	RST/ PWR	Description
10	RO	0h		Reserved (RSVD)
9:4	RO-V	00h	Uncore	Negotiated Link Width (NLW) This field indicates negotiated link width. This field is valid only when the link is in the L0, L0s, or L1 states (after link width negotiation is successfully completed). 00h = Reserved 01h = X1 02h = X2 04h = X4 08h = X8 10h = X16 All other encodings are reserved.
3:0	RO	0h		Current Link Speed (CLS) This field indicates the negotiated Link speed of the given PCI Express Link. The encoding is the binary value of the bit location in the Supported Link Speeds Vector (in the Link Capabilities 2 register) that corresponds to the current Link speed. For example, a value of 0010b in this field indicates that the current Link speed is that corresponding to bit 2 in the Supported Link Speeds Vector, which is 5.0 GT/s. All other encodings are reserved. The value in this field is undefined when the Link is not up.

2.6.41 SLOTCAP—Slot Capabilities Register

Note: PCI Express* Hot-Plug is not supported on the processor.

B/D/F/ Address Reset V Access: Size:	B/D/F/Type: Address Offset: Reset Value: Access: Size:		L/0-2/PCI -B7h 040000h 1-0, R0 bits	
Bit	Access	Reset Value	RST/ PWR	Description
31:19	RW-O	0000h	Uncore	Physical Slot Number (PSN) This field indicates the physical slot number attached to this Port. BIOS Requirement: This field must be initialized by BIOS to a value that assigns a slot number that is globally unique within the chassis.
18	RO	1b	Uncore	No Command Completed Support (NCCS) When set to 1b, this bit indicates that this slot does not generate software notification when an issued command is completed by the Hot-Plug Controller. This bit is only permitted to be set to 1b if the hot-plug capable port is able to accept writes to all fields of the Slot Control register without delay between successive writes.
17	RO	0b	Uncore	Reserved for Electromechanical Interlock Present (EIP) When set to 1b, this bit indicates that an Electromechanical Interlock is implemented on the chassis for this slot.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/1/0-2/PCI B4-B7h 00040000h RW-O, RO 32 bits		
Bit	Access	Reset Value	RST/ PWR	Description
16:15	RW-O	00b	Uncore	Slot Power Limit Scale (SPLS) This field specifies the scale used for the Slot Power Limit Value. 00 = 1.0x 01 = 0.1x 10 = 0.01x 11 = 0.001x If this field is written, the link sends a Set_Slot_Power_Limit message.
14:7	RW-O	00h	Uncore	Slot Power Limit Value (SPLV) In combination with the Slot Power Limit Scale value, specifies the upper limit on power supplied by slot. Power limit (in Watts) is calculated by multiplying the value in this field by the value in the Slot Power Limit Scale field. If this field is written, the link sends a Set_Slot_Power_Limit message.
6	RO	0b	Uncore	Reserved for Hot-plug Capable (HPC) When set to 1b, this bit indicates that this slot is capable of supporting hot-plug operations.
5	RO	0b	Uncore	Reserved for Hot-plug Surprise (HPS) When set to 1b, this bit indicates that an adapter present in this slot might be removed from the system without any prior notification. This is a form factor specific capability. This bit is an indication to the operating system to allow for such removal without impacting continued software operation.
4	RO	0b	Uncore	Reserved for Power Indicator Present (PIP) When set to 1b, this bit indicates that a Power Indicator is electrically controlled by the chassis for this slot.
3	RO	0b	Uncore	Reserved for Attention Indicator Present (AIP) When set to 1b, this bit indicates that an Attention Indicator is electrically controlled by the chassis.
2	RO	0b	Uncore	Reserved for MRL Sensor Present (MSP) When set to 1b, this bit indicates that an MRL Sensor is implemented on the chassis for this slot.
1	RO	0b	Uncore	Reserved for Power Controller Present (PCP) When set to 1b, this bit indicates that a software programmable Power Controller is implemented for this slot/adapter (depending on form factor).
0	RO	0b	Uncore	Reserved for Attention Button Present (ABP) When set to 1b, this bit indicates that an Attention Button for this slot is electrically controlled by the chassis.

2.6.42 SLOTCTL—Slot Control Register

Note: PCI Express* Hot-Plug is not supported on the processor.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/1 B8- 000 R0 16 fault Oh	L/0-2/PCI -B9h)0h bits	
Bit	Access	Reset Value	RST/ PWR	Description
15:13	RO	0h		Reserved (RSVD)
12	RO	0b	Uncore	Reserved for Data Link Layer State Changed Enable (DLLSCE) If the Data Link Layer Link Active capability is implemented, when set to 1b, this field enables software notification when Data Link Layer Link Active field is changed. If the Data Link Layer Link Active capability is not implemented, this bit is permitted to be read-only with a value of 0b.
11	RO	0b	Uncore	Reserved for Electromechanical Interlock Control (EIC) If an Electromechanical Interlock is implemented, a write of 1b to this field causes the state of the interlock to toggle. A write of 0b to this field has no effect. A read to this register always returns a 0.
10	RO	ОЬ	Uncore	Reserved for Power Controller Control (PCC) If a Power Controller is implemented, this field when written sets the power state of the slot per the defined encodings. Reads of this field must reflect the value from the latest write, even if the corresponding hot-plug command is not complete, unless software issues a write without waiting for the previous command to complete in which case the read value is undefined. Depending on the form factor, the power is turned on/off either to the slot or within the adapter. In some cases the power controller may autonomously remove slot power or not respond to a power-up request based on a detected fault condition, independent of the Power Controller Control setting. The defined encodings are: 0 = Power On 1 = Power Off If the Power Controller Implemented field in the Slot Capabilities register is set to 0b, then writes to this field have no effect and the read value of this field is undefined.
9:8	RO	00Ь	Uncore	Reserved Power Indicator Control (PIC) If a Power Indicator is implemented, writes to this field set the Power Indicator to the written state. Reads of this field must reflect the value from the latest write, even if the corresponding hot-plug command is not complete, unless software issues a write without waiting for the previous command to complete in which case the read value is undefined. 00 = Reserved 01 = On 10 = Blink 11 = Off If the Power Indicator Present bit in the Slot Capabilities register is 0b, this field is permitted to be read-only with a value of 00b.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/1 B8- 000 R0 16 fault Oh	./0-2/PCI -B9h 00h bits	
Bit	Access	Reset Value	RST/ PWR	Description
7:6	RO	00b	Uncore	Reserved for Attention Indicator Control (AIC) If an Attention Indicator is implemented, writes to this field set the Attention Indicator to the written state. Reads of this field must reflect the value from the latest write, even if the corresponding hot-plug command is not complete, unless software issues a write without waiting for the previous command to complete in which case the read value is undefined. If the indicator is electrically controlled by chassis, the indicator is controlled directly by the downstream port through implementation specific mechanisms. 00 = Reserved 01 = On 10 = Blink 11 = Off If the Attention Indicator Present bit in the Slot Capabilities register is 0b, this field is permitted to be read only with a value of 00b.
5	RO	Оb	Uncore	Reserved for Hot-plug Interrupt Enable (HPIE) When set to 1b, this bit enables generation of an interrupt on enabled hot-plug events Reset Value of this field is 0b. If the Hot-plug Capable field in the Slot Capabilities register is set to 0b, this bit is permitted to be read-only with a value of 0b.
4	RO	Ob	Uncore	Reserved for Command Completed Interrupt Enable (CCI) If Command Completed notification is supported (as indicated by No Command Completed Support field of Slot Capabilities Register), when set to 1b, this bit enables software notification when a hot-plug command is completed by the Hot-Plug Controller. If Command Completed notification is not supported, this bit must be hardwired to 0b.
3	RO	0b	Uncore	Presence Detect Changed Enable (PDCE) When set to 1b, this bit enables software notification on a presence detect changed event.
2	RO	Ob	Uncore	Reserved for MRL Sensor Changed Enable (MSCE) When set to 1b, this bit enables software notification on a MRL sensor changed event. If the MRL Sensor Present field in the Slot Capabilities register is set to 0b, this bit is permitted to be read-only with a value of 0b.
1	RO	Ob	Uncore	Reserved for Power Fault Detected Enable (PFDE) When set to 1b, this bit enables software notification on a power fault event. If Power Fault detection is not supported, this bit is permitted to be read-only with a value of 0b
0	RO	0b	Uncore	Reserved for Attention Button Pressed Enable (ABPE) When set to 1b, this bit enables software notification on an attention button pressed event.

2.6.43 SLOTSTS—Slot Status Register

This is a PCI Express* Slot related register.

B/D/F/ Address Reset V Access: Size: BIOS Op	Type: 5 Offset: alue: ptimal De	0/1 BA- 000 RO, 16 fault 00f	L/O-2/PCI -BBh JOh , RW1C, RO bits 1)-V
Bit	Access	Reset Value	RST/ PWR	Description
15:9	RO	0h		Reserved (RSVD)
8	RO	Ob	Uncore	Reserved for Data Link Layer State Changed (DLLSC) This bit is set when the value reported in the Data Link Layer Link Active field of the Link Status register is changed. In response to a Data Link Layer State Changed event, software must read the Data Link Layer Link Active field of the Link Status register to determine if the link is active before initiating configuration cycles to the hot plugged device.
7	RO	Ob	Uncore	Reserved for Electromechanical Interlock Status (EIS) If an Electromechanical Interlock is implemented, this bit indicates the current status of the Electromechanical Interlock. 0 = Electromechanical Interlock Disengaged 1 = Electromechanical Interlock Engaged
6	RO-V	ОЬ	Uncore	<pre>Presence Detect State (PDS) In band presence detect state: 0 = Slot Empty 1 = Card present in slot This bit indicates the presence of an adapter in the slot, reflected by the logical "OR" of the Physical Layer in-band presence detect mechanism and, if present, any out-of-band presence detect mechanism defined for the slot's corresponding form factor. Note that the in-band presence detect mechanism requires that power be applied to an adapter for its presence to be detected. Consequently, form factors that require a power controller for hot-plug must implement a physical pin presence detect mechanism. 0 = Slot Empty 1 = Card Present in slot This register must be implemented on all Downstream Ports that implement slots. For Downstream Ports not connected to slots (where the Slot Implemented bit of the PCI Express Capabilities Register is 0b), this bit must return 1b.</pre>
5	RO	0b	Uncore	Reserved for MRL Sensor State (MSS) This register reports the status of the MRL sensor if it is implemented. 0 = MRL Closed 1 = MRL Open
4	RO	ОЬ	Uncore	Reserved for Command Completed (CC) If Command Completed notification is supported (as indicated by No Command Completed Support field of Slot Capabilities Register), this bit is set when a hot-plug command has completed and the Hot-Plug Controller is ready to accept a subsequent command. The Command Completed status bit is set as an indication to host software that the Hot-Plug Controller has processed the previous command and is ready to receive the next command; it provides no assurance that the action corresponding to the command is complete. If Command Completed notification is not supported, this bit must be hardwired to 0b.

B/D/F/Type:0/1/0-Address Offset:BA-BBReset Value:0000hAccess:RO, RWSize:16 bitsBIOS Optimal Default00h		L/O-2/PCI -BBh OOh , RW1C, RO bits 1)-V	
Bit	Access	Reset Value	RST/ PWR	Description
3	RW1C	0b	Uncore	Presence Detect Changed (PDC) A pulse indication that the inband presence detect state has changed. This bit is set when the value reported in Presence Detect State is changed.
2	RO	0b	Uncore	Reserved for MRL Sensor Changed (MSC) If an MRL sensor is implemented, this bit is set when a MRL Sensor state change is detected. If an MRL sensor is not implemented, this bit must not be set.
1	RO	0b	Uncore	Reserved for Power Fault Detected (PFD) If a Power Controller that supports power fault detection is implemented, this bit is set when the Power Controller detects a power fault at this slot. Depending on hardware capability, it is possible that a power fault can be detected at any time, independent of the Power Controller Control setting or the occupancy of the slot. If power fault detection is not supported, this bit must not be set.
0	RO	Ob	Uncore	Reserved for Attention Button Pressed (ABP) If an Attention Button is implemented, this bit is set when the attention button is pressed. If an Attention Button is not supported, this bit must not be set.

2.6.44 RCTL-Root Control Register

This register allows control of PCI Express* Root Complex specific parameters. The system error control bits in this register determine if corresponding SERRs are generated when our device detects an error (reported in this device's Device Status register) or when an error message is received across the link. Reporting of SERR as controlled by these bits takes precedence over the SERR Enable in the PCI Command Register.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/1 BC- 000 RO, 16 fault 000	l/0-2/PCI -BDh)0h , RW bits)h	
Bit	Access	Reset Value	RST/ PWR	Description
15:5	RO	0h		Reserved (RSVD)
4	RO	Ob	Uncore	Reserved for CRS Software Visibility Enable (CSVE) This bit, when set, enables the Root Port to return Configuration Request Retry Status (CRS) Completion Status to software. Root Ports that do not implement this capability must hardwire this bit to 0b.
3	RW	ОЬ	Uncore	 PME Interrupt Enable (PMEIE) 0 = No interrupts are generated as a result of receiving PME messages. 1 = Enables interrupt generation upon receipt of a PME message as reflected in the PME Status bit of the Root Status Register. A PME interrupt is also generated if the PME Status bit of the Root Status Register is set when this bit is set from a cleared state. If the bit change from 1 to 0 and interrupt is pending than interrupt is deasserted
2	RW	0b	Uncore	 System Error on Fatal Error Enable (SEFEE) Controls the Root Complex's response to fatal errors. 0 = No SERR generated on receipt of fatal error. 1 = Indicates that an SERR should be generated if a fatal error is reported by any of the devices in the hierarchy associated with this Root Port, or by the Root Port itself.
1	RW	ОЬ	Uncore	System Error on Non-Fatal Uncorrectable Error Enable (SENFUEE) Controls the Root Complex's response to non-fatal errors. 0 = No SERR generated on receipt of non-fatal error. 1 = Indicates that an SERR should be generated if a non-fatal error is reported by any of the devices in the hierarchy associated with this Root Port, or by the Root Port itself.
0	RW	0b	Uncore	 System Error on Correctable Error Enable (SECEE) Controls the Root Complex's response to correctable errors. 0 = No SERR generated on receipt of correctable error. 1 = Indicates that an SERR should be generated if a correctable error is reported by any of the devices in the hierarchy associated with this Root Port, or by the Root Port itself.

2.6.45 RSTS-Root Status Register

This register provides information about PCI Express* Root Complex specific parameters.

B/D/F/Type:0/1/0-2/PCIAddress Offset:C0-C3hReset Value:0000000hAccess:RO, RW1C, ROSize:32 bitsBIOS Optimal Default0000h		l/0-2/PCI -C3h)00000h , RW1C, RO bits)0h)-V	
Bit	Access	Reset RST/ Value PWR		Description
31:18	RO	0h		Reserved (RSVD)
17	RO	0b	Uncore	PME Pending (PMEP) This bit indicates that another PME is pending when the PME Status bit is set. When the PME Status bit is cleared by software, the PME is delivered by hardware by setting the PME Status bit again and updating the Requestor ID appropriately. The PME pending bit is cleared by hardware if no more PMEs are pending.
16	RW1C	ОЬ	Uncore	 PME Status (PMES) This bit indicates that PME was asserted by the requestor ID indicated in the PME Requestor ID field. Subsequent PMEs are kept pending until the status register is cleared by writing a 1 to this field. An interrupt is asserted if PMEIE is asserted and PMES is changing from 0 to 1. An interrupt is deasserted if PMEIE is asserted and PMES is changing from 1 to 0. An Assert_PMEGPE is sent upstream if PMEGPEE in PEG Legacy Control register (PEGLC) is asserted and PMES is changing from 0 to 1. A Deassert_PMEGPE is sent upstream if PMEGPEE in PEG Legacy Control register (PEGLC) is asserted and PMES is changing from 1 to 0. An interrupt is deasserted if PMEIE is asserted and PMES is changing from 1 to 0.
15:0	RO-V	0000h	Uncore	PME Requestor ID (PMERID) This field indicates the PCI requestor ID of the last PME requestor.

2.6.46 DCAP2—Device Capabilities 2 Register

B/D/F/Type:0/1/0Address Offset:C4-C7Reset Value:00000Access:RO, R'Size:32 bitBIOS Optimal Default00000		/0-2/PCI -C7h 000800h RW-O bits 00000h		
Bit	Access	Reset Value	RST/ PWR	Description
31:12	RO	0h		Reserved (RSVD)
				Latency Tolerance and BW reporting Mechanism Supported (LTRS)
				& Bandwidth Requirement Reporting (LTBWR) mechanism capability.
11	RO	1b	Uncore	Root Ports, Switches and Endpoints are permitted to implement this capability. For Switches that implement LTBWR, this bit must be set only at the upstream port.
				For a multi-Function device, each Function must report the same value for this bit.
				For Bridges, Downstream Ports, and components that do not implement this capability, this bit must be hardwired to 0b.
10:6	RO	0h		Reserved (RSVD)
				ARI Forwarding Supported (ARIFS)
5	RW-O	0b	Uncore	Applicable only to Switch Downstream Ports and Root Ports; must be 0b for other Function types. This bit must be set to 1b if a Switch Downstream Port or Root Port supports this optional capability.
				Completion Time-out Disabled Supported (CTODS)
				A value of 1b indicates support for the Completion Timeout Disable mechanism.
4	RO	Ob	Uncore	The Completion Timeout Disable mechanism is required for Endpoints that issue Requests on their own behalf and PCI Express to PCI/PCI-X Bridges that take ownership of Requests issued on PCI Express.
				This mechanism is optional for Root Ports.
				The Root port does not support completion timeout disable.
				Completion Timer Ranges Supported (CTOR)
				Device Function support for the optional Completion Timeout programmability mechanism. This mechanism allows system software to modify the Completion Timeout value.
3:0	RO	0000b	Uncore	This field is applicable only to Root Ports, Endpoints that issue Requests on their own behalf, and PCI Express to PCI/PCI-X Bridges that take ownership of Requests issued on PCI Express. For all other Functions this field is reserved and must be hardwired to 0000b.
				Function must implement a time-out value in the range 50 μ s to 50 ms.

2.6.47 DCTL2—Device Control 2 Register

B/D/F/Type:0/1/0-2/PCIAddress Offset:C8-C9hReset Value:0000hAccess:RW-V, RWSize:16 bitsBIOS Optimal Default0000h		l/0-2/PCI -C9h O0h -V, RW bits O0h		
Bit	Access	Reset Value	RST/ PWR	Description
15:12	RO	0h		Reserved (RSVD)
11	RW-V	ОЬ	Uncore	Latency Tolerance and BW Reporting Mechanism Enable (LTREN) When set to 1b, this bit enables the Latency Tolerance & Bandwidth Requirement Reporting (LTBWR) mechanism. This bit is required for all Functions that support the LTBWR Capability. For a Multi-Function device associated with an upstream port of a device that implements LTBWR, the bit in Function 0 is of type RW, and only Function 0 controls the component's Link behavior. In all other Functions of that device, this bit is of type RsvdP. Components that do not implement LTBWR are permitted to hardwire this bit to 0b. Reset Value of this bit is 0b. This bit is cleared when the port goes to DL_down state. Hardware ignores the value of this bit.
10:6	RO	0h		Reserved (RSVD)
5	RW	ОЬ	Uncore	ARI Forward Enable (ARIFEN) When set, the Downstream Port disables its traditional Device Number field being 0 enforcement when turning a Type 1 Configuration Request into a Type 0 Configuration Request, permitting access to Extended Functions in an ARI Device immediately below the Port. Reset Value of this bit is 0b. It must be hardwired to 0b if the ARI Forwarding Supported bit is 0b.
4:0	RO	0h		Reserved (RSVD)

2.6.48 LCAP2—Link Capabilities 2 Register

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/1 CC- 000 RO- 32 fault 000	L/0-2/MMI -CFh 00000Eh -V bits 00000h	र
Bit	Access	ess Reset I Value		Description
31:8	RO	0h		Reserved (RSVD)
7:1	RO-V	07h	Uncore	Supported Link Speeds Vector (SLSV) This field indicates the supported Link speed(s) of the associated Port. For each bit, a value of 1b indicates that the corresponding Link speed is supported; otherwise, the Link speed is not supported. Bit definitions are: Bit 1 = 2.5 GT/s Bit 2 = 5.0 GT/s Bit 3 = 8.0 GT/s Bits 7:4 = Reserved Multi-Function devices associated with an Upstream Port must report the same value in this field for all Functions. DMI does not support this control register since it is Gen3 register.
0	RO	0h		Reserved (RSVD)

2.6.49 LCTL2–Link Control 2 Register

B/D/F/Type:0/1/0-2Address Offset:D0-D1hReset Value:0003hAccess:RWS, RWSize:16 bits		l/0-2/PCI -D1h)3h /S, RWS-V bits		
Bit	Access	Reset Value	RST/ PWR	Description
15:11	RO	0h		Reserved (RSVD)
10	RWS	Оb	Powergood	Enter Modified Compliance (entermodcompliance) When this bit is set to 1b, the device transmits modified compliance pattern if the LTSSM enters Polling.Compliance state. Components that support only the 2.5 GT/s speed are permitted to hardwire this bit to 0b. Reset Value of this field is 0b.
9:7	RO	0h		Reserved (RSVD)

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/1/0-2/PCI D0-D1h 0003h RWS, RWS-V 16 bits		
Bit	Access	Reset Value	RST/ PWR	Description
6	RWS	Оb	Powergood	Selectable De-emphasis (selectabledeemphasis) When the Link is operating at 5 GT/s speed, selects the level of de-emphasis. Encodings: 1 = -3.5 dB 0 = -6 dB Reset Value is implementation specific, unless a specific value is required for a selected form factor or platform. When the Link is operating at 2.5 GT/s speed, the setting of this bit has no effect. Components that support only the 2.5 GT/s speed are permitted to hardwire this bit to 0b.
5:4	RO	0h		Reserved (RSVD)
3:0	RWS	Зh	Powergood	Target Link Speed (TLS)For Downstream ports, this field sets an upper limit on linkoperational speed by restricting the values advertised by theupstream component in its training sequences.Defined encodings are:0001b = 2.5 Gb/s Target Link Speed001b = 2.5 Gb/s Target Link Speed001b = 5 Gb/s Target Link Speed0011b = 8 Gb/s Target Link SpeedAll other encodings are reserved.If a value is written to this field that does not correspond to aspeed included in the Supported Link Speeds field, the result isundefined.The Reset Value of this field is the highest link speed supportedby the component (as reported in the Supported Link Speedsfield of the Link Capabilities Register) unless the correspondingplatform / form factor requires a different Reset Value.For both Upstream and Downstream ports, this field is used toset the target compliance mode speed when software is usingthe Enter Compliance bit to force a link into compliance mode.

2.6.50 LSTS2—Link Status 2 Register

B/D/F/Type:OAddress Offset:IReset Value:OAccess:ISize:IBIOS Optimal DefaultO		0/1 D2- 000 RO- 16 fault 000	l/0-2/PCI -D3h O0h -V, RW1C bits Dh	
Bit	Access	Reset Value	RST/ PWR	Description
15:6	RO	0h		Reserved (RSVD)
5	RW1C	0b	Uncore	Link Equalization Request (LNKEQREQ) This bit is set by hardware to request the Link equalization process to be performed on the Link. Refer to PCIe Specification, Sections 4.2.3 and 4.2.6.4.2 for details. The Reset Value of this bit is 0b.
4	RO-V	0b	Uncore	Equalization Phase 3 Successful (EQPH3SUCC) When set to 1b, this bit indicates that Phase 3 of the Transmitter Equalization procedure has successfully completed. Details of the Transmitter Equalization process and when this bit needs to be set to 1b is provided in PCIe Specification, Section 4.2.6.4.2. The Reset Value of this bit is 0b.
				Equalization Phase 2 Successful (EQPH2SUCC)
3	RO-V	Ob	Uncore	When set to 1b, this bit indicates that Phase 2 of the Transmitter Equalization procedure has successfully completed. Details of the Transmitter Equalization process and when this bit needs to be set to 1b is provided in PCIe specification Section 4.2.6.4.2. The Reset Value of this bit is 0b.
				Equalization Phase 1 Successful (EOPH1SUCC)
2	RO-V	0b	Uncore	When set to 1b, this bit indicates that Phase 1 of the Transmitter Equalization procedure has successfully completed. Details of the Transmitter Equalization process and when this bit needs to be set to 1b is provided in PCIe specification Section 4.2.6.4.2. The Reset Value of this bit is 0b.
1	RO-V	0b	Uncore	Equalization Complete (EQCOMPLETE) When set to 1b, this bit indicates that the Transmitter Equalization procedure has completed. Details of the Transmitter Equalization process and when this bit needs to be set to 1b is provided in PCIe specification Section 4.2.6.4.2. The Reset Value of this bit is 0b.
0	RO-V	0b	Uncore	Current De-emphasis Level (CURDELVL) When the Link is operating at 5 GT/s speed, this reflects the level of de-emphasis. 1 = -3.5 dB 0 = -6 dB When the Link is operating at 2.5 GT/s speed, this bit is 0b.

2.7 PCI Device 1 Function 0–2 Extended Configuration Registers

Table 2-10. PCI Device 1 Function 0–2 Extended Configuration Register Address Map

Address Offset	Register Symbol	Register Name	Reset Value	Access
0-103h	RSVD	Reserved	0h	RO
104-107h	PVCCAP1	Port VC Capability Register 1	00000000h	RO
108–10Bh	PVCCAP2	Port VC Capability Register 2	00000000h	RO
10C-10Dh	PVCCTL	Port VC Control	0000h	RW, RO
10E-10Fh	RSVD	Reserved	0h	RO
110-113h	VCORCAP	VC0 Resource Capability	0000001h	RO
114-117h	VC0RCTL	VC0 Resource Control	800000FFh	RO, RW
118–119h	RSVD	Reserved	0h	RO
11A-11Bh	VCORSTS	VC0 Resource Status	0002h	RO-V
11C-207h	RSVD	Reserved	0h	RO
208–20Bh	PEG_TC	PCI Express Completion Time-out	00010005h	RW
20C-D9Fh	RSVD	Reserved	02000100h	RO, RW-O
DA0-DA3h	EQCTL0_1	Lane 0/1 Equalization Control Register	07080708h	RW
DA4-DA7h	EQCTL2_3	Lane 2/3 Equalization Control Register	07080708h	RW
DA8-DABh	EQCTL4_5	Lane 4/5 Equalization Control Register	07080708h	RW
DAC-DAFh	EQCTL6_7	Lane 6/7 Equalization Control Register	07080708h	RW
DB0-DB3h	EQCTL8_9	Lane 8/9 Equalization Control Register	07080708h	RW
DB4-DB7h	EQCTL10_11	Lane 10/11 Equalization Control Register	07080708h	RW
DB8-DBBh	EQCTL12_13	Lane 12/13 Equalization Control Register	07080708h	RW
DBC-DBFh	EQCTL14_15	Lane 14/15 Equalization Control Register	07080708h	RW
DC0-DD7h	RSVD	Reserved	0h	RO
DD8-DDBh	EQCFG	Equalization Configuration Register	F9404400h	RW

2.7.1 PVCCAP1—Port VC Capability Register 1

This register describes the configuration of PCI $\ensuremath{\mathsf{Express}}\xspace^*$ Virtual Channels associated with this port.

B/D/F/Type:0/1Address Offset:104Reset Value:000Access:ROSize:32 IBIOS Optimal Default000		L/0-2/MMF L-107h 000000h bits 00000h	2	
Bit	Access	Reset Value	RST/ PWR	Description
31:7	RO	0h		Reserved (RSVD)
6:4	RO	000b	Uncore	Low Priority Extended VC Count (LPEVCC) This field indicates the number of (extended) Virtual Channels in addition to the default VC belonging to the low-priority VC (LPVC) group that has the lowest priority with respect to other VC resources in a strict-priority VC Arbitration. The value of 0 in this field implies strict VC arbitration.
3	RO	0h		Reserved (RSVD)
2:0	RO	000b	Uncore	Extended VC Count (EVCC) This field indicates the number of (extended) Virtual Channels in addition to the default VC supported by the device.

2.7.2 PVCCAP2—Port VC Capability Register 2

This register describes the configuration of PCI Express* Virtual Channels associated with this port.

B/D/F/Type:0/1/Address Offset:108-Reset Value:0000Access:ROSize:32 biBIOS Optimal Default0000			l/0–2/MMF 3–10Bh)000000h bits)0h	2
Bit	Access	Reset Value	RST/ PWR	Description
31:24	RO	00h	Uncore	VC Arbitration Table Offset (VCATO) This field indicates the location of the VC Arbitration Table. This field contains the zero-based offset of the table in DQWORDS (16 bytes) from the base address of the Virtual Channel Capability Structure. A value of 0 indicates that the table is not present (due to fixed VC priority).
23:8	RO	0h		Reserved (RSVD)
7:0	RO	00h	Uncore	Reserved for VC Arbitration Capability (VCAC)

2.7.3 PVCCTL—Port VC Control Register

B/D/F/Type:0/1/0-2/MMRAddress Offset:10C-10DhReset Value:0000hAccess:RW, ROSize:16 bitsBIOS Optimal Default000h		l/0-2/MMR C-10Dh O0h , RO bits Dh	2	
Bit	Access	Reset Value	RST/ PWR	Description
15:4	RO	0h		Reserved (RSVD)
3:1	RW	000b	Uncore	VC Arbitration Select (VCAS) This field will be programmed by software to the only possible value as indicated in the VC Arbitration Capability field. Since there is no other VC supported than the default, this field is reserved.
0	RO	Ob	Uncore	Reserved for Load VC Arbitration Table (VCARB) Used for software to update the VC Arbitration Table when VC arbitration uses the VC Arbitration Table. As a VC Arbitration Table is never used by this component this field will never be used.

2.7.4 VCORCAP-VCO Resource Capability Register

B/D/F/Type:0/1/0-2Address Offset:110-113Reset Value:0000000Access:ROSize:32 bitsBIOS Optimal Default00h				R
Bit	Access	Reset Value	RST/ PWR	Description
31:24	RO	00h	Uncore	Reserved for Port Arbitration Table Offset (PATO)
23	RO	0h		Reserved (RSVD)
22:16	RO	00h	Uncore	Reserved for Maximum Time Slots (MTS)
15	RO	0b	Uncore	 Reject Snoop Transactions (RSNPT) 0 = Transactions with or without the No Snoop bit set within the TLP header are allowed on this VC. 1 = When set, any transaction for which the No Snoop attribute is applicable but is not set within the TLP Header will be rejected as an Unsupported Request
14:8	RO	0h		Reserved (RSVD)
7:0	RO	01h	Uncore	Port Arbitration Capability (PAC)This field indicates types of Port Arbitration supported by the VCresource. This field is valid for all Switch Ports, Root Ports thatsupport peer-to-peer traffic, and RCRBs, but not for PCI ExpressEndpoint devices or Root Ports that do not support peer-to-peertraffic.Each bit location within this field corresponds to a Port ArbitrationCapability defined below. When more than one bit in this field isset, it indicates that the VC resource can be configured to providedifferent arbitration services.Software selects among these capabilities by writing to the PortArbitration Select field (see below).Defined bit positions are:Bit 0Non-configurable hardware-fixed arbitration scheme, such as., Round Robin (RR)Bit 1Weighted Round Robin (WRR) arbitration with 32 phasesBit 2WRR arbitration with 64 phasesBit 3Bit 4Time-based WRR with 128 phasesBit 5WRR arbitration with 256 phasesBit 5Bit 6-7ReservedProcessor only supported arbitration indicates "Non-configurable hardware-fixed arbitration scheme".

2.7.5 VC0RCTL-VC0 Resource Control Register

This register controls the resources associated with PCI Express* Virtual Channel 0.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/1 114 800 RO, 32 fault 000	L/0–2/MMI I–117h)000FFh , RW bits)h	R
Bit	Access	Reset Value	RST/ PWR	Description
31	RO	1b	Uncore	VC0 Enable (VC0E) For VC0, this is hardwired to 1 and read only as VC0 can never be disabled.
30:27	RO	0h		Reserved (RSVD)
26:24	RO	000b	Uncore	VC0 ID (VC0ID) Assigns a VC ID to the VC resource. For VC0, this is hardwired to 0 and read only.
23:20	RO	0h		Reserved (RSVD)
19:17	RW	000Ь	Uncore	Port Arbitration Select (PAS) This field configures the VC resource to provide a particular Port Arbitration service. This field is valid for RCRBs, Root Ports that support peer to peer traffic, and Switch Ports, but not for PCI Express Endpoint devices or Root Ports that do not support peer to peer traffic. The permissible value of this field is a number corresponding to one of the asserted bits in the Port Arbitration Capability field of the VC resource. This field does not affect the root port behavior.
16	RO	0h		Reserved (RSVD)
15:8	RW	00h	Uncore	TC High VC0 Map (TCHVC0M) Allow usage of high order TCs. BIOS should keep this field zeroed to allow usage of the reserved TC[3] for other purposes.
7:1	RW	7Fh	Uncore	TC/VC0 Map (TCVCOM) This field indicates the TCs (Traffic Classes) that are mapped to the VC resource. Bit locations within this field correspond to TC values. For example, when bit 7 is set in this field, TC7 is mapped to this VC resource. When more than one bit in this field is set, it indicates that multiple TCs are mapped to the VC resource. In order to remove one or more TCs from the TC/VC Map of an enabled VC, software must ensure that no new or outstanding transactions with the TC labels are targeted at the given Link.
0	RO	1b	Uncore	TCO/VCO Map (TCOVCOM) Traffic Class 0 is always routed to VC0.

2.7.6 VCORSTS—VCO Resource Status Register

This register reports the Virtual Channel specific status.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/1 114 000 RO- 16 fault 000	L/0-2/MMF A-11Bh)2h -V bits)0h	2
Bit	Access	Reset Value	RST/ PWR	Description
15:2	RO	0h		Reserved (RSVD)
1	RO-V	1b	Uncore	 VCO Negotiation Pending (VCONP) 0 = The VC negotiation is complete. 1 = The VC resource is still in the process of negotiation (initialization or disabling). This bit indicates the status of the process of Flow Control initialization. It is set by default on Reset, as well as whenever the corresponding Virtual Channel is Disabled or the Link is in the DL_Down state. It is cleared when the link successfully exits the FC_INIT2 state. Before using a Virtual Channel, software must check whether the VC Negotiation Pending fields for that Virtual Channel are cleared in both Components on a Link.
0	RO	0h		Reserved (RSVD)

2.7.7 **PEG_TC-PCI Express* Completion Timeout Register**

This register reports PCI Express* configuration control of PCI Express Completion Timeout related parameters that are not required by the PCI Express specification.

B/D/F/Type: Address Offset: Access:		0/1/0-2/MMR 208h RW		
Bit	Access	Reset Value	RST/ PWR	Description
31:15	RO	000000000 00000000b		Reserved (RSVD)
14:12	RW	111b		PCI Express Completion Timeout (PEG_TC) This field determines the number of milliseconds the Transaction Layer will wait to receive an expected completion. To avoid hang conditions, the Transaction Layer will generate a dummy completion to the requestor if it does not receive the completion within this time period. 000 = Disable 001 = Reserved 010 = Reserved 100 = Reserved 101 = Reserved 110 = Reserved x11 = 48 ms - for normal operation
11:0	RO	000000000 000b		Reserved (RSVD)

2.7.8 EQCTL0_1—Lane 0/1 Equalization Control Register

Lane Equalization Control Register (2 lanes are combined, lane "0" is the lower numbered lane, lane "1" is the higher numbered lane)

B/D/F/ Address Reset V Access: Size: BIOS Op	Type: 5 Offset: alue: otimal De	0/1 DA 070 RW 32 fault Oh	L/0–2/MMI 0–DA3h 080708h bits	R
Bit	Access	Reset Value	RST/ PWR	Description
31	RO	0h		Reserved (RSVD)
30:28	RW	000b	Uncore	Lane 1 Downstream Component Receiver Preset Hint (DCRPH1) Receiver Preset Hint for Downstream Component. The Upstream Component must pass on this value in the EQ TS2's. See the <i>PCIe</i> <i>Base Specification 3.0</i> , Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
27:24	RW	0111b	Uncore	Lane 1 Downstream Component Transmitter Preset (DCTP1) Transmitter Preset for Downstream Component. The Upstream Component must pass on this value in the EQ TS2's. See the <i>PCIe</i> <i>Base Specification 3.0</i> , Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
23	RO	0h		Reserved (RSVD)
22:20	RW	000b	Uncore	Lane 1 Upstream Component Receiver Preset Hint (UCRPH1) Receiver Preset Hint for Upstream Component. The upstream component may use this hint for receiver equalization. See the PCIE Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
19:16	RW	1000b	Uncore	Lane 1 Upstream Component Transmitter Preset (UCTP1) Transmitter Preset for an Upstream Component. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
15	RO	0h		Reserved (RSVD)
14:12	RW	000b	Uncore	Lane 0 Downstream Component Receiver Preset Hint (DCRPH0) Receiver Preset Hint for Downstream Component. The Upstream Component must pass on this value in the EQ TS2's. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
11:8	RW	0111b	Uncore	Lane 0 Downstream Component Transmitter Preset (DCTP0) Transmitter Preset for Downstream Component. The Upstream Component must pass on this value in the EQ TS2's. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
7	RO	0h		Reserved (RSVD)
6:4	RW	000b	Uncore	Lane 0 Upstream Component Receiver Preset Hint (UCRPHO) Receiver Preset Hint for Upstream Component. The upstream component may use this hint for receiver equalization. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
3:0	RW	1000b	Uncore	Lane 0 Upstream Component Transmitter Preset (UCTP0) Transmitter Preset for an Upstream Component. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.

2.7.9 EQCTL2_3—Lane 2/3 Equalization Control Register

Lane Equalization Control Register (2 lanes are combined, lane "0" is the lower numbered lane, lane "1" is the higher numbered lane)

B/D/F/ Address Reset V Access: Size: BIOS Op	Type: 5 Offset: alue: otimal De	0/1 DA 070 RW 32 fault Oh	L/0–2/MM 4–DA7h 080708h v bits	R
Bit	Access	Reset Value	RST/ PWR	Description
31	RO	0h		Reserved (RSVD)
30:28	RW	000b	Uncore	Lane 1 Downstream Component Receiver Preset Hint (DCRPH1) Receiver Preset Hint for Downstream Component. The Upstream Component must pass on this value in the EQ TS2's. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
27:24	RW	0111b	Uncore	Lane 1 Downstream Component Transmitter Preset (DCTP1) Transmitter Preset for Downstream Component. The Upstream Component must pass on this value in the EQ TS2's. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
23	RO	0h		Reserved (RSVD)
22:20	RW	000b	Uncore	Lane 1 Upstream Component Receiver Preset Hint (UCRPH1) Receiver Preset Hint for Upstream Component. The upstream component may use this hint for receiver equalization. See the PCIE Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
19:16	RW	1000b	Uncore	Lane 1 Upstream Component Transmitter Preset (UCTP1) Transmitter Preset for an Upstream Component. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
15	RO	0h		Reserved (RSVD)
14:12	RW	000b	Uncore	Lane 0 Downstream Component Receiver Preset Hint (DCRPH0) Receiver Preset Hint for Downstream Component. The Upstream Component must pass on this value in the EQ TS2's. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
11:8	RW	0111b	Uncore	Lane 0 Downstream Component Transmitter Preset (DCTP0) Transmitter Preset for Downstream Component. The Upstream Component must pass on this value in the EQ TS2's. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
7	RO	0h		Reserved (RSVD)
6:4	RW	000Ь	Uncore	Lane 0 Upstream Component Receiver Preset Hint (UCRPH0) Receiver Preset Hint for Upstream Component. The upstream component may use this hint for receiver equalization. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
3:0	RW	1000b	Uncore	Lane 0 Upstream Component Transmitter Preset (UCTP0) Transmitter Preset for an Upstream Component. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.

2.7.10 EQCTL4_5—Lane 4/5 Equalization Control Register

Lane Equalization Control Register (2 lanes are combined, lane "0" is the lower numbered lane, lane "1" is the higher numbered lane).

B/D/F/ Address Reset V Access: Size: BIOS Op	Type: 5 Offset: alue: ptimal De	0/1 DA 070 RW 32 fault 0h	L/0–1/MM 8–DABh 080708h / bits	R
Bit	Access	Reset Value	RST/ PWR	Description
31	RO	0h		Reserved (RSVD)
30:28	RW	000b	Uncore	Lane 1 Downstream Component Receiver Preset Hint (DCRPH1) Receiver Preset Hint for Downstream Component. The Upstream Component must pass on this value in the EQ TS2's. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
27:24	RW	0111b	Uncore	Lane 1 Downstream Component Transmitter Preset (DCTP1) Transmitter Preset for Downstream Component. The Upstream Component must pass on this value in the EQ TS2's. See PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
23	RO	0h		Reserved (RSVD)
22:20	RW	000b	Uncore	Lane 1 Upstream Component Receiver Preset Hint (UCRPH1) Receiver Preset Hint for Upstream Component. The upstream component may use this hint for receiver equalization. See the PCIE Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
19:16	RW	1000b	Uncore	Lane 1 Upstream Component Transmitter Preset (UCTP1) Transmitter Preset for an Upstream Component. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
15	RO	0h		Reserved (RSVD)
14:12	RW	000b	Uncore	Lane 0 Downstream Component Receiver Preset Hint (DCRPH0) Receiver Preset Hint for Downstream Component. The Upstream Component must pass on this value in the EQ TS2's. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
11:8	RW	0111b	Uncore	Lane 0 Downstream Component Transmitter Preset (DCTP0) Transmitter Preset for Downstream Component. The Upstream Component must pass on this value in the EQ TS2's. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
7	RO	0h		Reserved (RSVD)
6:4	RW	000Ь	Uncore	Lane 0 Upstream Component Receiver Preset Hint (UCRPH0) Receiver Preset Hint for Upstream Component. The upstream component may use this hint for receiver equalization. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
3:0	RW	1000b	Uncore	Lane 0 Upstream Component Transmitter Preset (UCTP0) Transmitter Preset for an Upstream Component. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.

2.7.11 EQCTL6_7—Lane 6/7 Equalization Control Register

Lane Equalization Control Register (2 lanes are combined, lane "0" is the lower numbered lane, lane "1" is the higher numbered lane).

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Det		0/1/0-1/MMR DAC-DAFh 07080708h RW 32 bits fault 0h		R
Bit	Access	Reset Value	RST/ PWR	Description
31	RO	0h		Reserved (RSVD)
30:28	RW	000Ь	Uncore	Lane 1 Downstream Component Receiver Preset Hint (DCRPH1) Receiver Preset Hint for Downstream Component. The Upstream Component must pass on this value in the EQ TS2's. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
27:24	RW	0111b	Uncore	Lane 1 Downstream Component Transmitter Preset (DCTP1) Transmitter Preset for Downstream Component. The Upstream Component must pass on this value in the EQ TS2's. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
23	RO	0h		Reserved (RSVD)
22:20	RW	000b	Uncore	Lane 1 Upstream Component Receiver Preset Hint (UCRPH1) Receiver Preset Hint for Upstream Component. The upstream component may use this hint for receiver equalization. See the PCIE Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
19:16	RW	1000b	Uncore	Lane 1 Upstream Component Transmitter Preset (UCTP1) Transmitter Preset for an Upstream Component. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
15	RO	0h		Reserved (RSVD)
14:12	RW	000b	Uncore	Lane 0 Downstream Component Receiver Preset Hint (DCRPH0) Receiver Preset Hint for Downstream Component. The Upstream Component must pass on this value in the EQ TS2's. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
11:8	RW	0111b	Uncore	Lane 0 Downstream Component Transmitter Preset (DCTP0) Transmitter Preset for Downstream Component. The Upstream Component must pass on this value in the EQ TS2's. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
7	RO	0h		Reserved (RSVD)
6:4	RW	000b	Uncore	Lane 0 Upstream Component Receiver Preset Hint (UCRPH0) Receiver Preset Hint for Upstream Component. The upstream component may use this hint for receiver equalization. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
3:0	RW	1000b	Uncore	Lane 0 Upstream Component Transmitter Preset (UCTP0) Transmitter Preset for an Upstream Component. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.

2.7.12 EQCTL8_9—Lane 8/9 Equalization Control Register

B/D/F/ Address Reset V Access: Size: BIOS Op	Type: 5 Offset: alue: otimal De	0/1 DB(070 RW 32 fault 0h	L/0/MMR 0-DB3h 080708h / bits	
Bit	Access	Reset Value	RST/ PWR	Description
31	RO	0h		Reserved (RSVD)
30:28	RW	000b	Uncore	Lane 1 Downstream Component Receiver Preset Hint (DCRPH1) Receiver Preset Hint for Downstream Component. The Upstream Component must pass on this value in the EQ TS2's. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
27:24	RW	0111b	Uncore	Lane 1 Downstream Component Transmitter Preset (DCTP1) Transmitter Preset for Downstream Component. The Upstream Component must pass on this value in the EQ TS2's. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
23	RO	0h		Reserved (RSVD)
22:20	RW	000b	Uncore	Lane 1 Upstream Component Receiver Preset Hint (UCRPH1) Receiver Preset Hint for Upstream Component. The upstream component may use this hint for receiver equalization. See the PCIE Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
19:16	RW	1000b	Uncore	Lane 1 Upstream Component Transmitter Preset (UCTP1) Transmitter Preset for an Upstream Component. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
15	RO	0h		Reserved (RSVD)
14:12	RW	000b	Uncore	Lane 0 Downstream Component Receiver Preset Hint (DCRPH0) Receiver Preset Hint for Downstream Component. The Upstream Component must pass on this value in the EQ TS2's. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
11:8	RW	0111b	Uncore	Lane 0 Downstream Component Transmitter Preset (DCTP0) Transmitter Preset for Downstream Component. The Upstream Component must pass on this value in the EQ TS2's. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
7	RO	0h		Reserved (RSVD)
6:4	RW	000b	Uncore	Lane 0 Upstream Component Receiver Preset Hint (UCRPH0) Receiver Preset Hint for Upstream Component. The upstream component may use this hint for receiver equalization. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
3:0	RW	1000b	Uncore	Lane 0 Upstream Component Transmitter Preset (UCTP0) Transmitter Preset for an Upstream Component. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.

2.7.13 EQCTL10_11—Lane 10/11 Equalization Control Register

B/D/F/ Address Reset V Access: Size: BIOS Op	Type: 5 Offset: alue: ptimal De	0/1 DB 070 RW 32 fault Oh	L/0/MMR 4–DB7h 080708h / bits	
Bit	Access	Reset Value	RST/ PWR	Description
31	RO	0h		Reserved (RSVD)
30:28	RW	000b	Uncore	Lane 1 Downstream Component Receiver Preset Hint (DCRPH1) Receiver Preset Hint for Downstream Component. The Upstream Component must pass on this value in the EQ TS2's. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
27:24	RW	0111b	Uncore	Lane 1 Downstream Component Transmitter Preset (DCTP1) Transmitter Preset for Downstream Component. The Upstream Component must pass on this value in the EQ TS2's. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
23	RO	0h		Reserved (RSVD)
22:20	RW	000b	Uncore	Lane 1 Upstream Component Receiver Preset Hint (UCRPH1) Receiver Preset Hint for Upstream Component. The upstream component may use this hint for receiver equalization. See the PCIE Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
19:16	RW	1000b	Uncore	Lane 1 Upstream Component Transmitter Preset (UCTP1) Transmitter Preset for an Upstream Component. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
15	RO	0h		Reserved (RSVD)
14:12	RW	000b	Uncore	Lane 0 Downstream Component Receiver Preset Hint (DCRPH0) Receiver Preset Hint for Downstream Component. The Upstream Component must pass on this value in the EQ TS2's. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
11:8	RW	0111b	Uncore	Lane 0 Downstream Component Transmitter Preset (DCTP0) Transmitter Preset for Downstream Component. The Upstream Component must pass on this value in the EQ TS2's. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
7	RO	0h		Reserved (RSVD)
6:4	RW	000b	Uncore	Lane 0 Upstream Component Receiver Preset Hint (UCRPH0) Receiver Preset Hint for Upstream Component. The upstream component may use this hint for receiver equalization. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
3:0	RW	1000b	Uncore	Lane 0 Upstream Component Transmitter Preset (UCTP0) Transmitter Preset for an Upstream Component. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.

2.7.14 EQCTL12_13—Lane 12/13 Equalization Control Register

B/D/F/ Address Reset V Access: Size: BIOS Op	Type: 5 Offset: alue: ptimal De	0/1 DB 070 RW 32 fault 0h	L/O/MMR 8-DBBh 080708h / bits	
Bit	Access	Reset Value	RST/ PWR	Description
31	RO	0h		Reserved (RSVD)
30:28	RW	000b	Uncore	Lane 1 Downstream Component Receiver Preset Hint (DCRPH1) Receiver Preset Hint for Downstream Component. The Upstream Component must pass on this value in the EQ TS2's. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
27:24	RW	0111b	Uncore	Lane 1 Downstream Component Transmitter Preset (DCTP1) Transmitter Preset for Downstream Component. The Upstream Component must pass on this value in the EQ TS2's. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
23	RO	0h		Reserved (RSVD)
22:20	RW	000b	Uncore	Lane 1 Upstream Component Receiver Preset Hint (UCRPH1) Receiver Preset Hint for Upstream Component. The upstream component may use this hint for receiver equalization. See the PCIE Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
19:16	RW	1000b	Uncore	Lane 1 Upstream Component Transmitter Preset (UCTP1) Transmitter Preset for an Upstream Component. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
15	RO	0h		Reserved (RSVD)
14:12	RW	000b	Uncore	Lane 0 Downstream Component Receiver Preset Hint (DCRPH0) Receiver Preset Hint for Downstream Component. The Upstream Component must pass on this value in the EQ TS2's. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
11:8	RW	0111b	Uncore	Lane 0 Downstream Component Transmitter Preset (DCTP0) Transmitter Preset for Downstream Component. The Upstream Component must pass on this value in the EQ TS2's. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
7	RO	0h		Reserved (RSVD)
6:4	RW	000b	Uncore	Lane 0 Upstream Component Receiver Preset Hint (UCRPH0) Receiver Preset Hint for Upstream Component. The upstream component may use this hint for receiver equalization. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
3:0	RW	1000b	Uncore	Lane 0 Upstream Component Transmitter Preset (UCTP0) Transmitter Preset for an Upstream Component. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.

2.7.15 EQCTL14_15—Lane 14/15 Equalization Control Register

B/D/F/ Address Reset V Access: Size: BIOS Op	Type: 5 Offset: alue: ptimal De	0/1 DB 070 RW 32 fault Oh	L/0/MMR C-DBFh 080708h / bits	
Bit	Access	Reset Value	RST/ PWR	Description
31	RO	0h		Reserved (RSVD)
30:28	RW	000b	Uncore	Lane 1 Downstream Component Receiver Preset Hint (DCRPH1) Receiver Preset Hint for Downstream Component. The Upstream Component must pass on this value in the EQ TS2's. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
27:24	RW	0111b	Uncore	Lane 1 Downstream Component Transmitter Preset (DCTP1) Transmitter Preset for Downstream Component. The Upstream Component must pass on this value in the EQ TS2's. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
23	RO	0h		Reserved (RSVD)
22:20	RW	000b	Uncore	Lane 1 Upstream Component Receiver Preset Hint (UCRPH1) Receiver Preset Hint for Upstream Component. The upstream component may use this hint for receiver equalization. See the PCIE Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
19:16	RW	1000b	Uncore	Lane 1 Upstream Component Transmitter Preset (UCTP1) Transmitter Preset for an Upstream Component. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
15	RO	0h		Reserved (RSVD)
14:12	RW	000b	Uncore	Lane 0 Downstream Component Receiver Preset Hint (DCRPH0) Receiver Preset Hint for Downstream Component. The Upstream Component must pass on this value in the EQ TS2's. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
11:8	RW	0111b	Uncore	Lane 0 Downstream Component Transmitter Preset (DCTP0) Transmitter Preset for Downstream Component. The Upstream Component must pass on this value in the EQ TS2's. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
7	RO	0h		Reserved (RSVD)
6:4	RW	000b	Uncore	Lane 0 Upstream Component Receiver Preset Hint (UCRPH0) Receiver Preset Hint for Upstream Component. The upstream component may use this hint for receiver equalization. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.
3:0	RW	1000b	Uncore	Lane 0 Upstream Component Transmitter Preset (UCTP0) Transmitter Preset for an Upstream Component. See the PCIe Base Specification 3.0, Section 4.2.3 for details. The encodings are defined in Section 4.2.3.2.

2.7.16 EQCFG—Equalization Configuration Register

B/D/F/ Address Reset V Access: Size: BIOS Op	Type: 5 Offset: alue: otimal De	0/1 DD F94 RW 32 fault 0h	L/O/MMR 8-DDBh 104400h bits	
Bit	Access	Reset Value	RST/ PWR	Description
31:26	RW	3Eh	Uncore	Full Swing Value (FS) FS is used to calculate the transmitter coefficients during Equalization. Default is 62d. Note: all equalization presets' coefficients have been calculated using the default FS value of 62d. If FS is changed, the preset tables located in EQPRESET* registers may need to be re- programmed to fulfill FS. FS = $ Cm1 + C0 + Cp1 $ (C0 > 0)
25:20	RW	14h	Uncore	Low Frequency Value (LF) LF is used to calculate the transmitter coefficients during Equalization. Default is 20d. Note: All equalization presets' coefficients have been calculated using the default LF value of 20d. If LF is changed, the preset tables located in EQPRESET* registers may need to be re- programmed to fulfill LF. Cm1 + C0 + Cp1 > LF
19:16	RO	0h		Reserved (RSVD)
15	RW	0b	Uncore	Bypass Phase 2 Equalization (EQPH2BYP) If set, after Phase 1 is complete, the LTSSM will bypass Phase 2 and 3 of equalization.
14	RW	1b	Uncore	Bypass Phase 3 Equalization (EQPH3BYP) If set, after Phase 2 is complete, the LTSSM will bypass Phase 3 of equalization and go back to Recovery.RcvrLock.
13	RW	0b	Uncore	Disable Margining (MARGINDIS) When set, it will disable Tx margining during Polling.Compliance and Recovery.
12:8	RO	0h		Reserved (RSVD)
7	RW	0b	Uncore	Gen3 Bypass Levels (G3BYPLVL) If this bit is set, the Tx Eq Levels will be bypassed only during Gen3. The values of the bypass levels are found in the port EQBYPLVLBND* registers. When this bit is set, Phase 2 and Phase 3 equalization is expected to be bypassed.
6	RW	0b	Uncore	Global Bypass Levels (GLBBYPLVL) If this bit is set, the Tx Eq Levels will be bypassed for all speeds. The values of the bypass levels are found in the port EQBYPLVLBND* registers. When this bit is set, Phase 2 and Phase 3 equalization is expected to be bypassed.

B/D/F/Type:0/1/0Address Offset:DD8-Reset Value:F9400Access:RWSize:32 bitBIOS Optimal Default0h		L/O/MMR 8-DDBh 104400h bits		
Bit	Access	Reset Value	RST/ PWR	Description
5:2	RW	Oh	Uncore	Bypass Coefficients During Phase 3 (BYPCOEFPH3) Bit [0]: Controls the value of bit 7 in Symbol 6 of EQ TS1s during "Bypass Phase 3 Adaptation" 1 = use preset 0 = use coefficients The preset is defined by the per-lane DCTP field in EQCTL register. Coefficient values are defined within the appropriate EQPRESET* register, using DCTP as an index. Bits [3:1]: Undefined
1	RW	0b	Uncore	Bypass Phase 3 Adaptation FSM (BYPADFSM) When set, when Phase 3 is entered, "bypass" coefficients will be sent to the link partner. When the coefficients are accepted by the link partner, no adaptation will be done, and Phase 3 will be complete. This bit needs to be set before phase 3 start.
0	RO	0h		Reserved (RSVD)

2.8 PCI Device 2 Configuration Space Registers

Table 2-11. PCI Device 2 Configuration Space Register Address Map

Address Offset	Register Symbol	Register Name	Reset Value	Access
0-1h	VID2	Vendor Identification	8086h	RO
2–3h	DID2	Device Identification	0152h	RO-V, RO-FW
4-5h	PCICMD2	PCI Command	0000h	RW, RO
6-7h	PCISTS2	PCI Status	0090h	RO, RO-V
8h	RID2	Revision Identification	00h	RO-FW
9-Bh	CC	Class Code	030000h	RO-V, RO
Ch	CLS	Cache Line Size	00h	RO
Dh	MLT2	Master Latency Timer	00h	RO
Eh	HDR2	Header Type	00h	RO
Fh	RSVD	Reserved	0h	RO
10-17h	GTTMMADR	Graphics Translation Table, Memory Mapped Range Address	000000000 0000004h	RO, RW
18-1Fh	GMADR	Graphics Memory Range Address	00000000 0000000Ch	RW, RO, RW-L
20-23h	IOBAR	I/O Base Address	0000001h	RW, RO
24-2Bh	RSVD	Reserved	0h	RO
2C-2Dh	SVID2	Subsystem Vendor Identification	0000h	RW-O
2E–2Fh	SID2	Subsystem Identification	0000h	RW-O
30-33h	ROMADR	Video BIOS ROM Base Address	00000000h	RO
34h	CAPPOINT	Capabilities Pointer	90h	RO-V
35–3Bh	RSVD	Reserved	0h	RO
3Ch	INTRLINE	Interrupt Line	00h	RW
3Dh	INTRPIN	Interrupt Pin	01h	RO
3Eh	MINGNT	Minimum Grant	00h	RO
3Fh	MAXLAT	Maximum Latency	00h	RO
40-61h	RSVD	Reserved	—	—
62h	MSAC	Multi Size Aperture Control	02h	RW, RW-K
63-FFh	RSVD	Reserved	-	-

2.8.1 VID2—Vendor Identification Register

This register combined with the Device Identification register uniquely identifies any PCI device.

B/D/F/Type:0/2/0/P0Address Offset:0-1hReset Value:8086hAccess:ROSize:16 bits		2/0/PCI Lh 36h bits		
Bit	Access	Reset Value	RST/ PWR	Description
15:0	RO	8086h	Uncore	Vendor Identification Number (VID) PCI standard identification for Intel.

2.8.2 DID2—Device Identification Register

This register combined with the Vendor Identification register uniquely identifies any PCI device.

This is a 16 bit value assigned to the processor Graphics device.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/2/0/PCI 2–3h 0152h RO-V, RO-FW 16 bits		
Bit	Access	Reset Value	RST/ PWR	Description
15:4	RO-FW	015h	Uncore	Device Identification Number MSB (DID_MSB) This is the upper part of a 16 bit value assigned to the Graphics device. Valid Values: 15h 16h
3:2	RO-V	00b	Uncore	Device Identification Number – SKU (DID_SKU)Those are bits 3:2 of the 16-bit value assigned to the processor Graphics device.SKUBits 3:2Desktop00
1:0	RO-V	10b	Uncore	Device Identification Number LSB (DID_LSB) This is the lower part of a 16 bit value assigned to the processor Graphics device.

2.8.3 PCICMD2—PCI Command Register

This 16-bit register provides basic control over the IGD's ability to respond to PCI cycles. The PCICMD Register in the IGD disables the IGD PCI compliant master accesses to main memory.

B/D/F/ Address Reset V Access: Size: BIOS Op	Type: 5 Offset: alue: ptimal De	0/2 4-5 000 RW 16 fault 00f	2/0/PCI 5h 00h 7, RO bits 1	
Bit	Access	Reset Value	RST/ PWR	Description
15:11	RO	0h		Reserved (RSVD)
10	RW	0b	FLR, Uncore	Interrupt Disable (INTDIS) This bit disables the device from asserting INTx#. 0 = Enable the assertion of this device's INTx# signal. 1 = Disable the assertion of this device's INTx# signal. DO_INTx messages will not be sent to DMI.
9	RO	0b	Uncore	Fast Back-to-Back (FB2B) Not Implemented. Hardwired to 0.
8	RO	0b	Uncore	SERR Enable (SERRE) Not Implemented. Hardwired to 0.
7	RO	0b	Uncore	Address/Data Stepping Enable (ADSTEP) Not Implemented. Hardwired to 0.
6	RO	0b	Uncore	Parity Error Enable (PERRE) Not Implemented. Hardwired to 0. Since the IGD belongs to the category of devices that does not corrupt programs or data in system memory or hard drives, the IGD ignores any parity error that it detects and continues with normal operation.
5	RO	0b	Uncore	Video Palette Snooping (VPS) This bit is hardwired to 0 to disable snooping.
4	RO	0b	Uncore	Memory Write and Invalidate Enable (MWIE) Hardwired to 0. The IGD does not support memory write and invalidate commands.
3	RO	0b	Uncore	Special Cycle Enable (SCE) This bit is hardwired to 0. The IGD ignores Special cycles.
2	RW	0b	FLR, Uncore	Bus Master Enable (BME)0 = Disable IGD bus mastering.1 = Enable the IGD to function as a PCI compliant master.
1	RW	0b	FLR, Uncore	Memory Access Enable (MAE) This bit controls the IGD's response to memory space accesses. 0 = Disable. 1 = Enable.
0	RW	0b	FLR, Uncore	 I/O Access Enable (IOAE) This bit controls the IGD's response to I/O space accesses. 0 = Disable. 1 = Enable.

2.8.4 PCISTS2—PCI Status Register

PCISTS is a 16-bit status register that reports the occurrence of a PCI compliant master abort and PCI compliant target abort.

PCISTS also indicates the DEVSEL# timing that has been set by the IGD.

B/D/F/ Address Reset V Access: Size: BIOS Op	Type: 5 Offset: alue: ptimal De	0/2 6-7 009 RO 16 fault Oh	2/0/PCI 7h 90h , RO-V bits	
Bit	Access	Reset Value	RST/ PWR	Description
15	RO	0b	Uncore	Detected Parity Error (DPE) Since the IGD does not detect parity, this bit is always hardwired to 0.
14	RO	0b	Uncore	Signaled System Error (SSE) The IGD never asserts SERR#; therefore, this bit is hardwired to 0.
13	RO	0b	Uncore	Received Master Abort Status (RMAS) The IGD never gets a Master Abort; therefore, this bit is hardwired to 0.
12	RO	0b	Uncore	Received Target Abort Status (RTAS) The IGD never gets a Target Abort; therefore, this bit is hardwired to 0.
11	RO	0b	Uncore	Signaled Target Abort Status (STAS) Hardwired to 0. The IGD does not use target abort semantics.
10:9	RO	00b	Uncore	DEVSEL Timing (DEVT) N/A. These bits are hardwired to "00".
8	RO	0b	Uncore	Master Data Parity Error Detected (DPD) Since Parity Error Response is hardwired to disabled (and the IGD does not do any parity detection), this bit is hardwired to 0.
7	RO	1b	Uncore	Fast Back-to-Back (FB2B) Hardwired to 1. The IGD accepts fast back-to-back when the transactions are not to the same agent.
6	RO	0b	Uncore	User Defined Format (UDF) Hardwired to 0.
5	RO	0b	Uncore	66 MHz PCI Capable (C66) N/A – Hardwired to 0.
4	RO	1b	Uncore	Capability List (CLIST) This bit is set to 1 to indicate that the register at 34h provides an offset into the function's PCI Configuration Space containing a pointer to the location of the first item in the list.
3	RO-V	0b	Uncore	Interrupt Status (INTSTS) This bit reflects the state of the interrupt in the device. Only when the Interrupt Disable bit in the command register is a 0 and this Interrupt Status bit is a 1, will the devices INTx# signal be asserted.
2:0	RO	0h		Reserved (RSVD)

2.8.5 **RID2**—Revision Identification Register

This register contains the revision number for Device 2 Functions 0. These bits are read only and writes to this register have no effect.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/2/0/PCI 8h 00h RO-FW 8 bits		
Bit	Access	Reset Value	RST/ PWR	Description
7:0	RO-FW	0h	Uncore	Revision Identification Number (RID) Refer to the <i>Desktop 3rd Generation Intel</i> [®] <i>Core</i> [™] <i>Processor</i> <i>Family Specification Update</i> for the value of the RID register.

2.8.6 CC-Class Code Register

This register contains the device programming interface information related to the Sub-Class Code and Base Class Code definition for the IGD. This register also contains the Base Class Code and the function sub-class in relation to the Base Class Code.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/2/0/PCI 9-Bh 030000h RO-V, RO 24 bits		
Bit	Access	Reset Value	RST/ PWR	Description
23:16	RO-V	03h	Uncore	Base Class Code (BCC) This is an 8-bit value that indicates the base class code. 03h = Display Controller.
15:8	RO-V	00h	Uncore	Sub-Class Code (SUBCC) 00h = VGA compatible.
7:0	RO	00h	Uncore	Programming Interface (PI) 00h = Display Controller.

2.8.7 CLS—Cache Line Size Register

The IGD does not support this register as a PCI slave.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/2/0/PCI Ch 00h RO 8 bits		
Bit	Access	Reset Value	RST/ PWR	Description
7:0	RO	00h	Uncore	Cache Line Size (CLS) This field is hardwired to 0s. The IGD as a PCI compliant master does not use the Memory Write and Invalidate command and, in general, does not perform operations based on cache line size.

2.8.8 MLT2—Master Latency Timer Register

The IGD does not support the programmability of the master latency timer because it does not perform bursts.

B/D/F/ Address Reset V Access: Size:	Type: Offset: alue:	le: 0/2/0/PCI fset: Dh e: 00h RO 8 bits		
Bit	Access	Reset Value	RST/ PWR	Description
7:0	RO	00h	Uncore	Master Latency Timer Count Value (MLTCV) Hardwired to 0s.

2.8.9 HDR2—Header Type Register

This register contains the Header Type of the IGD.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/2/0/PCI Eh 00h RO 8 bits		
Bit	Access	Reset Value	RST/ PWR	Description
7	RO	0b	Uncore	Multi Function Status (MFUNC) This bit indicates if the device is a Multi-Function Device. The Value of this register is hardwired to 0; processor graphics is a single function.
6:0	RO	00h	Uncore	Header Code (H) This is a 7-bit value that indicates the Header Code for the IGD. This code has the value 00h, indicating a type 0 configuration space format.

2.8.10 GTTMMADR—Graphics Translation Table, Memory Mapped Range Address Register

This register requests allocation for the combined Graphics Translation Table Modification Range and Memory Mapped Range. The range requires 4 MB combined for MMIO and Global GTT aperture, with 2 MB of that used by MMIO and 2 MB used by GTT. GTTADR will begin at (GTTMMADR + 2 MB) while the MMIO base address will be the same as GTTMMADR.

For the Global GTT, this range is defined as a memory BAR in graphics device configuration space. It is an alias into which software is required to write Page Table Entry values (PTEs). Software may read PTE values from the global Graphics Translation Table (GTT). PTEs cannot be written directly into the global GTT memory area.

The device snoops writes to this region in order to invalidate any cached translations within the various TLBs implemented on-chip.

The allocation is for 4 MB and the base address is defined by bits 38:22.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/2/0/PCI 10-17h 00000000000 RO, RW 64 bits		00004h
Bit	Access	Reset Value	RST/ PWR	Description
63:39	RW	0000000h	FLR, Uncore	Reserved for Memory Base Address (RSVDRW) Must be set to 0 since addressing above 512 GB is not supported.
38:22	RW	00000h	FLR, Uncore	Memory Base Address (MBA) set by the operating system, these bits correspond to address signals 38:22. 4 MB combined for MMIO and Global GTT table aperture (2 MB for MMIO and 2 MB for GTT).
21:4	RO	00000h	Uncore	Address Mask (ADM) Hardwired to 0s to indicate at least 4 MB address range.
3	RO	0b	Uncore	Prefetchable Memory (PREFMEM) Hardwired to 0 to prevent prefetching.
2:1	RO	10b	Uncore	Memory Type (MEMTYP) 00 = To indicate 32 bit base address 01 = Reserved 10 = To indicate 64 bit base address 11 = Reserved
0	RO	0b	Uncore	Memory/IO Space (MIOS) Hardwired to 0 to indicate memory space.

2.8.11 GMADR—Graphics Memory Range Address Register

 GMADR is the PCI aperture used by S/W to access tiled graphics surfaces in a linear fashion.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/2/0/PCI 18-1Fh 00000000000 RW, RO, RW-L 64 bits		0000Ch -
Bit	Access	Reset Value	RST/ PWR	Description
63:39	RW	0000000h	FLR, Uncore	Reserved for Memory Base Address (RSVDRW) Must be set to 0 since addressing above 512 GB is not supported.
38:29	RW	00000000 00b	FLR, Uncore	Memory Base Address (MBA) set by the OS, these bits correspond to address signals 38:29.
28	RW-L	0b	FLR, Uncore	512 MB Address Mask (ADMSK512) This Bit is either part of the Memory Base Address (RW) or part of the Address Mask (RO), depending on the value of MSAC[2:1]. See Section 2.8.21, "MSAC—Multi Size Aperture Control Register" on page 162 for details.
27	RW-L	0b	FLR, Uncore	256 MB Address Mask (ADMSK256) This bit is either part of the Memory Base Address (RW) or part of the Address Mask (RO), depending on the value of MSAC[2:1]. See Section 2.8.21, "MSAC—Multi Size Aperture Control Register" on page 162 for details.
26:4	RO	000000h	Uncore	Address Mask (ADM) Hardwired to 0s to indicate at least 128 MB address range.
3	RO	1b	Uncore	Prefetchable Memory (PREFMEM) Hardwired to 1 to enable prefetching.
2:1	RO	10b	Uncore	Memory Type (MEMTYP) 00 = 32-bit address. 10 = 64-bit address
0	RO	0b	Uncore	Memory/IO Space (MIOS) Hardwired to 0 to indicate memory space.

2.8.12 IOBAR-I/O Base Address Register

This register provides the Base offset of the I/O registers within Device 2. Bits 15:6 are programmable allowing the I/O Base to be located anywhere in 16bit I/O Address Space. Bits 2:1 are fixed and return zero; bit 0 is hardwired to a one indicating that 8 bytes of I/O space are decoded. Access to the 8Bs of I/O space is allowed in PM state D0 when I/O Enable (PCICMD bit 0) set. Access is disallowed in PM states D1–D3 or if I/O Enable is clear or if Device 2 is turned off or if internal graphics is disabled thru the fuse or fuse override mechanisms.

Access to this I/O BAR is independent of VGA functionality within Device 2.

If accesses to this I/O bar are allowed, then all 8, 16 or 32-bit I/O cycles from IA cores that falls within the 8B are claimed.

B/D/F/Type:0/2/0Address Offset:20-23Reset Value:00000Access:RW, RSize:32 bitsBIOS Optimal Default00000			2/0/PCI -23h 000001h , RO bits 000h	
Bit	Access	Reset Value	RST/ PWR	Description
31:16	RO	0h		Reserved (RSVD)
15:6	RW	000h	FLR, Uncore	IO Base Address (IOBASE) Set by the OS, these bits correspond to address signals 15:6.
5:3	RO	0h		Reserved (RSVD)
2:1	RO	00b	Uncore	Memory Type (MEMTYPE) Hardwired to 0s to indicate 32-bit address.
0	RO	1b	Uncore	Memory/IO Space (MIOS) Hardwired to "1" to indicate I/O space.

2.8.13 SVID2—Subsystem Vendor Identification Register

This register is used to uniquely identify the subsystem where the PCI device resides.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/2/0/PCI 2C-2Dh 0000h RW-0 16 bits		
Bit	Access	Reset Value	RST/ PWR	Description
15:0	RW-O	0000h	Uncore	Subsystem Vendor ID (SUBVID) This value is used to identify the vendor of the subsystem. This register should be programmed by BIOS during boot-up. Once written, this register becomes Read-only. This register can only be cleared by a Reset.

2.8.14 SID2—Subsystem Identification Register

This register is used to uniquely identify the subsystem where the PCI device resides.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/2/0/PCI 2E-2Fh 0000h RW-0 16 bits		
Bit	Access	Reset Value	RST/ PWR	Description
15:0	RW-O	0000h	Uncore	Subsystem Identification (SUBID) This value is used to identify a particular subsystem. This field should be programmed by BIOS during boot-up. Once written, this register becomes Read-only. This register can only be cleared by a Reset.

2.8.15 ROMADR-Video BIOS ROM Base Address Register

The IGD does not use a separate BIOS ROM; therefore this register is hardwired to 0s.

B/D/F/Type:0/2/0/PCIAddress Offset:30-33hReset Value:0000000hAccess:ROSize:32 bitsBIOS Optimal Default000h			2/0/PCI -33h 000000h bits 0h	
Bit	Access	Reset Value	RST/ PWR	Description
31:18	RO	0000h	Uncore	ROM Base Address (RBA) Hardwired to 0s.
17:11	RO	00h	Uncore	Address Mask (ADMSK) Hardwired to 0s to indicate 256 KB address range.
10:1	RO	0h		Reserved (RSVD)
0	RO	0b	Uncore	ROM BIOS Enable (RBE) 0 = ROM not accessible.

2.8.16 CAPPOINT—Capabilities Pointer Register

This register points to a linked list of capabilities implemented by this device.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/2/0/PCI 34h 90h RO-V 8 bits		
Bit	Access	Reset Value	RST/ PWR	Description
7:0	RO-V	90h	Uncore	Capabilities Pointer Value (CPV) This field contains an offset into the function's PCI Configuration Space for the first item in the New Capabilities Linked List, the MSI Capabilities ID registers at address 90h or the Power Management capability at D0h. This value is determined by the configuration in CAPL[0].

2.8.17 INTRLINE—Interrupt Line Register

This 8-bit register is used to communicate interrupt line routing information. It is read/write and must be implemented by the device. POST software will write the routing information into this register as it initializes and configures the system.

The value in this register tells which input of the system interrupt controller(s) the device's interrupt pin is connected to. The device itself does not use this value; rather it is used by device drivers and operating systems to determine priority and vector information.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/2/0/PCI 3Ch 00h RW 8 bits		
Bit	Access	Reset Value	RST/ PWR	Description
7:0	RW	00h	Uncore	Interrupt Connection (INTCON) This field is used to communicate interrupt line routing information. POST software writes the routing information into this register as it initializes and configures the system. The value in this register indicates to which input of the system interrupt controller the device's interrupt pin is connected.

2.8.18 INTRPIN—Interrupt Pin Register

This register tells which interrupt pin the device uses. The Integrated Graphics Device uses INTA#.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/2/0/PCI 3Dh 01h RO 8 bits		
Bit	Access	Reset Value	RST/ PWR	Description
7:0	RO	01h	Uncore	Interrupt Pin (INTPIN) As a single function device, the IGD specifies INTA# as its interrupt pin. 01h = INTA#.

2.8.19 MINGNT-Minimum Grant Register

The Integrated Graphics Device has no requirement for the settings of Latency Timers.

B/D/F/Type:0/2/0/PCIAddress Offset:3EhReset Value:00hAccess:ROSize:8 bits		2/0/PCI 1 1 its		
Bit	Access	Reset Value	RST/ PWR	Description
7:0	RO	00h	Uncore	Minimum Grant Value (MGV) The IGD does not burst as a PCI compliant master.

2.8.20 MAXLAT—Maximum Latency Register

The Integrated Graphics Device has no requirement for the settings of Latency Timers.

B/D/F/Type:0/2/0/PCIAddress Offset:3FhReset Value:00hAccess:ROSize:8 bits		!/0/PCI its		
Bit	Access	Reset Value	RST/ PWR	Description
7:0	RO	00h	Uncore	Maximum Latency Value (MLV) The IGD has no specific requirements for how often it needs to access the PCI bus.

2.8.21 MSAC—Multi Size Aperture Control Register

This register determines the size of the graphics memory aperture in Function 0 and in the trusted space. Only the system BIOS will write this register based on pre- boot address allocation efforts, but the graphics may read this register to determine the correct aperture size. System BIOS needs to save this value on boot so that it can reset it correctly during S3 resume.

B/D/F/Type:0/2/Address Offset:62hReset Value:02hAccess:RW,Size:8 bitBIOS Optimal Default0h		2/0/PCI 1 7, RW-K its		
Bit	Access	Reset Value	RST/ PWR	Description
7:4	RW	0h	Uncore	Reserved RW (RSVDRW) Scratch Bits Only Have no physical effect on hardware
3	RO	0h		Reserved (RSVD)
2	RW-K	ОЬ	Uncore	 Untrusted Aperture Size High (LHSASH) This field is used in conjunction with LHSASL. The description below is for both fields (LHSASH & LHSASL). 11 = Bits [28:27] of GMADR are RO, allowing 512 MB of GMADR 10 = Illegal Programming 01 = Bit [28] of GMADR is RW but bit [27] of GMADR is RO, allowing 256 MB of GMADR 00 = Bits [28:27] of GMADR are RW, allowing 128 MB of GMADR
1	RW-K	1b	Uncore	 Untrusted Aperture Size Low (LHSASL) This field is used in conjunction with LHSASH. The description below is for both fields (LHSASH & LHSASL). 11 = Bits [28:27] of GMADR are RO, allowing 512 MB of GMADR 10 = Illegal Programming 01 = Bit [28] of GMADR is RW but bit [27] of GMADR is RO, allowing 256 MB of GMADR 00 = Bits [28:27] of GMADR are RW, allowing 128 MB of GMADR
0	RO	0h		Reserved (RSVD)

2.9 Device 2 IO Registers

Table 2-12. Device 2 IO Register Address Map

Address Offset	Register Symbol	Register Name	Reset Value	Access
0-3h	Index	MMIO Address Register	00000000h	RW
4-7h	Data	MMIO Data Register	00000000h	RW

2.9.1 Index–MMIO Address Register

MMIO_INDEX: A 32 bit I/O write to this port loads the offset of the MMIO register or offset into the GTT that needs to be accessed. An I/O Read returns the current value of this register.

This mechanism to access internal graphics MMIO registers must not be used to access VGA I/O registers which are mapped through the MMIO space. VGA registers must be accessed directly through the dedicated VGA I/O ports.

B/D/F/Type:0/2/0,Address Offset:0-3hReset Value:00000Access:RWSize:32 bitsBIOS Optimal Default00000		2/0/PCI IO Bh 000000h bits 000000h		
Bit	Access	Reset Value	RST/ PWR	Description
31:21	RO	0h		Reserved (RSVD)
20:2	RW	00000h	FLR, Uncore	Register/GTT Offset (REGGTTO) This field selects any one of the DWord registers within the MMIO register space of Device 2 if the target is MMIO Registers. This field selects a GTT offset if the target is the GTT.
1:0	RW	00b	FLR, Uncore	Target (TARG) 00 = MMIO Registers 01 = GTT 1X = Reserved

2.9.2 Data—MMIO Data Register

MMIO_DATA: A 32-bit I/O write to this port is re-directed to the MMIO register/GTT location pointed to by the MMIO-index register. A 32-bit I/O read to this port is redirected to the MMIO register/GTT location pointed to by the MMIO-index register.

B/D/F/Type:0/2/0/PCI IOAddress Offset:4-7hReset Value:00000000hAccess:RWSize:32 bits		/0/PCI IO h 00000h pits		
Bit	Access	Reset Value	RST/ PWR	Description
31:0	RW	00000000h	FLR, Uncore	MMIO Data Window (DATA) This field is the data field associated with the IO2MMIO access.

2.10 PCI Device 6 Registers

Table 2-13. PCI Device 6 Register Address Map (Sheet 1 of 2)

Address Offset	Register Symbol	Register Name	Reset Value	Access
0-1h	VID	Vendor Identification	8086h	RO
2-3h	DID	Device Identification	015Dh	RO-FW
4-5h	PCICMD	PCI Command	0000h	RW, RO
6-7h	PCISTS	PCI Status	0010h	RW1C, RO, RO- V
8h	RID	Revision Identification	00h	RO-FW
9–Bh	CC	Class Code	060400h	RO
Ch	CL	Cache Line Size	00h	RW
Dh	RSVD	Reserved	0h	RO
Eh	HDR	Header Type	81h	RO
Fh	RSVD	Reserved	0h	RO
18h	PBUSN	Primary Bus Number	00h	RO
19h	SBUSN	Secondary Bus Number	00h	RW
1Ah	SUBUSN	Subordinate Bus Number	00h	RW
1Bh	RSVD	Reserved	0h	RO
1Ch	IOBASE	I/O Base Address	F0h	RW
1Dh	IOLIMIT	I/O Limit Address	00h	RW
1E-1Fh	SSTS	Secondary Status	0000h	RW1C, RO
20-21h	MBASE	Memory Base Address	FFF0h	RW
22–23h	MLIMIT	Memory Limit Address	0000h	RW
24-25h	PMBASE	Prefetchable Memory Base Address	FFF1h	RW, RO
26-27h	PMLIMIT	Prefetchable Memory Limit Address	0001h	RW, RO
28-2Bh	PMBASEU	Prefetchable Memory Base Address Upper	00000000h	RW
2C-2Fh	PMLIMITU	Prefetchable Memory Limit Address Upper	00000000h	RW
30-33h	RSVD	Reserved	0h	RO
34h	CAPPTR	Capabilities Pointer	88h	RO
35–3Bh	RSVD	Reserved	0h	RO
3Ch	INTRLINE	Interrupt Line	00h	RW
3Dh	INTRPIN	Interrupt Pin	01h	RW-O, RO
3E-3Fh	BCTRL	Bridge Control	0000h	RO, RW
40-7Fh	RSVD	Reserved	0h	RO
80-83h	PM_CAPID	Power Management Capabilities	C8039001h	RO, RO-V
84-87h	PM_CS	Power Management Control/Status	0000008h	RO, RW
88-8Bh	SS_CAPID	Subsystem ID and Vendor ID Capabilities	0000800Dh	RO
8C-8Fh	SS	Subsystem ID and Subsystem Vendor ID	00008086h	RW-O

Address Offset	Register Symbol	Register Name	Reset Value	Access
90-91h	MSI_CAPID	Message Signaled Interrupts Capability ID	A005h	RO
92-93h	MC	Message Control	0000h	RO, RW
94-97h	MA	Message Address	00000000h	RW, RO
98-99h	MD	Message Data	0000h	RW
9A-9Fh	RSVD	Reserved	0h	RO
A0-A1h	PEG_CAPL	PCI Express-G Capability List	0010h	RO
A2–A3h	PEG_CAP	PCI Express-G Capabilities	0142h	RO, RW-O
A4–A7h	DCAP	Device Capabilities	00008000h	RO, RW-O
A8–A9h	DCTL	Device Control	0000h	RO, RW
AA–ABh	DSTS	Device Status	0000h	RO, RW1C
AC-AFh	LCAP	Link Capabilities	0521CC42h	RO, RW-O, RO- V, RW-OV
B0-B1h	LCTL	Link Control	0000h	RO, RW, RW-V
B2-B3h	LSTS	Link Status	1001h	RW1C, RO-V, RO
B4-B7h	SLOTCAP	Slot Capabilities	00040000h	RW-O, RO
B8-B9h	SLOTCTL	Slot Control	0000h	RO
BA-BBh	SLOTSTS	Slot Status	0000h	RO, RO-V, RW1C
BC-BDh	RCTL	Root Control	0000h	RW, RO
BE-CBh	RSVD	Reserved	_	-
CC-CFh	LCAP2	Link Capabilities 2	00000006h	RO-V
D0-D1h	RSVD	Reserved	0002h	RWS, RWS-V

Table 2-13. PCI Device 6 Register Address Map (Sheet 2 of 2)

2.10.1 VID—Vendor Identification Register

This register combined with the Device Identification register uniquely identify any PCI device.

B/D/F/Type:0/6/0/PCIAddress Offset:0-1hReset Value:8086hAccess:ROSize:16 bits		6/0/PCI h 86h bits		
Bit	Access	Reset Value	RST/ PWR	Description
15:0	RO	8086h	Uncore	Vendor Identification (VID) PCI standard identification for Intel.

2.10.2 DID—Device Identification Register

This register combined with the Vendor Identification register uniquely identifies any PCI device.

B/D/F/Type:0/6/0/PCIAddress Offset:2-3hReset Value:015DhAccess:RO-FWSize:16 bits		5/0/PCI 3h 5Dh -FW bits		
Bit	Access	Reset Value	RST/ PWR	Description
15:0	RO-FW	015Dh	Uncore	Device Identification Number MSB (DID_MSB) Identifier assigned to the processor root port (virtual PCI-to-PCI bridge, PCI Express Graphics port).

2.10.3 PCICMD—PCI Command Register

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Def		0/6/0/PCI 4-5h 0000h RW, RO 16 bits fault 00h		
Bit	Access	Reset Value	RST/ PWR	Description
15:11	RO	0h		Reserved (RSVD)
10	RW	Оb	Uncore	 INTA Assertion Disable (INTAAD) 0 = This device is permitted to generate INTA interrupt messages. 1 = This device is prevented from generating interrupt messages. Any INTA emulation interrupts already asserted must be de-asserted when this bit is set. Only affects interrupts generated by the device (PCI INTA from a PME or Hot-plug event) controlled by this command register. It does not affect upstream MSIs, upstream PCI INTA-INTD assert and deassert messages. Note: PCI Express* Hot-Plug is not supported on the processor.
9	RO	0b	Uncore	Fast Back-to-Back Enable (FB2B) Not Applicable or Implemented. Hardwired to 0.

B/D/F/Type:0/6/0/PCIAddress Offset:4-5hReset Value:0000hAccess:RW, ROSize:16 bitsBIOS Optimal Default00h			6/0/PCI 5h 00h , RO bits 1	
Bit	Access	Reset Value	RST/ PWR	Description
				SERR# Message Enable (SERRE)
				This bit controls the root port's SERR# messaging. The processor communicates the SERR# condition by sending an SERR message to the PCH. This bit, when set, enables reporting of non-fatal and fatal errors detected by the device to the Root Complex. Note that errors are reported if enabled either through this bit or through the PCI Express* specific bits in the Device Control Register.
8	RW	Ob	Uncore	In addition, for Type 1 configuration space header devices, this bit, when set, enables transmission by the primary interface of ERR_NONFATAL and ERR_FATAL error messages forwarded from the secondary interface. This bit does not affect the transmission of forwarded ERR_COR messages.
				0 = The SERR message is generated by the root port only under conditions enabled individually through the Device Control Register.
				1 = The root port is enabled to generate SERR messages which will be sent to the PCH for specific root port error conditions generated/detected or received on the secondary side of the virtual PCI to PCI bridge. The status of SERRs generated is reported in the PCISTS register.
7	RO	0h		Reserved (RSVD)
				Parity Error Response Enable (PERRE)
				This bit controls whether or not the Master Data Parity Error bit in the PCI Status register can bet set.
6	RW	0b	Uncore	 Master Data Parity Error bit in PCI Status register can NOT be set.
				 Master Data Parity Error bit in PCI Status register CAN be set.
5	RO	0b	Uncore	VGA Palette Snoop (VGAPS) Not Applicable or Implemented. Hardwired to 0.
4	RO	0b	Uncore	Memory Write and Invalidate Enable (MWIE) Not Applicable or Implemented. Hardwired to 0.
3	RO	0b	Uncore	Special Cycle Enable (SCE) Not Applicable or Implemented. Hardwired to 0.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal De		0/6/0/PCI 4-5h 0000h RW, RO 16 bits fault 00h		
Bit	Access	Reset Value	RST/ PWR	Description
2	RW	Ob	Uncore	 Bus Master Enable (BME) THis bit controls the ability of the PEG port to forward Memory Read/Write Requests in the upstream direction. 0 = This device is prevented from making memory requests to its primary bus. According to PCI Specification, as MSI interrupt messages are in-band memory writes, disabling the bus master enable bit prevents this device from generating MSI interrupt messages or passing them from its secondary bus to its primary bus. Upstream memory writes/reads, peer writes/reads, and MSIs will all be treated as illegal cycles. Writes are aborted. Reads are aborted and will return Unsupported Request status (or Master abort) in its completion packet 1 = This device is allowed to issue requests to its primary bus. Completions for previously issued memory read requests on the primary bus will be issued when the data is available. This bit does not affect forwarding of Completions from the primary interface to the secondary interface.
1	RW	Ob	Uncore	 Memory Access Enable (MAE) 0 = All of device's memory space is disabled. 1 = Enable the Memory and Pre-fetchable memory address ranges defined in the MBASE, MLIMIT, PMBASE, and PMLIMIT registers.
0	RW	0b	Uncore	IO Access Enable (IOAE) 0 = All of device's I/O space is disabled. 1 = Enable the I/O address range defined in the IOBASE, and IOLIMIT registers.

2.10.4 PCISTS—PCI Status Register

This register reports the occurrence of error conditions associated with primary side of the "virtual" Host-PCI Express bridge embedded within the Root port.

B/D/F/ Address Reset V Access: Size: BIOS Op	Type: 5 Offset: alue: otimal De	0/6 6-7 001 RW 16 fault 0h	5/0/PCI 7h LOh 11C, RO, RC bits	D-V
Bit	Access	Reset Value	RST/ PWR	Description
15	RW1C	Ob	Uncore	Detected Parity Error (DPE) This bit is set by a Function whenever it receives a Poisoned TLP, regardless of the state the Parity Error Response bit in the Command register. On a Function with a Type 1 Configuration header, the bit is set when the Poisoned TLP is received by its Primary Side. Reset Value of this bit is 0b. This bit will be set only for completions of requests encountering ECC error in DRAM. Poisoned peer-2-peer posted forwarded will not set this bit. They are reported at the receiving port.
14	RW1C	Оb	Uncore	Signaled System Error (SSE) This bit is set when this Device sends an SERR due to detecting an ERR_FATAL or ERR_NONFATAL condition and the SERR Enable bit in the Command register is '1'. Both received (if enabled by BCTRL1[1]) and internally detected error messages do not affect this field.
13	RO	0b	Uncore	Received Master Abort Status (RMAS): This bit is set when a Requester receives a Completion with Unsupported Request Completion Status. On a Function with a Type 1 Configuration header, the bit is set when the Unsupported Request is received by its Primary Side. Not applicable. There is No UR on primary interface
12	RO	Оb	Uncore	Received Target Abort Status (RTAS) This bit is set when a Requester receives a Completion with Completer Abort Completion Status. On a Function with a Type 1 Configuration header, the bit is set when the Completer Abort is received by its Primary Side. Reset Value of this bit is 0b. Not Applicable or Implemented. Hardwired to 0. The concept of a Completer abort does not exist on primary side of this device.
11	RO	0b	Uncore	Signaled Target Abort Status (STAS): This bit is set when a Function completes a Posted or Non-Posted Request as a Completer Abort error. This applies to a Function with a Type 1 Configuration header when the Completer Abort was generated by its Primary Side. Reset Value of this bit is 0b. Not Applicable or Implemented. Hardwired to 0. The concept of a target abort does not exist on primary side of this device.
10:9	RO	00b	Uncore	DEVSELB Timing (DEVT) This device is not the subtractively decoded device on bus 0. This bit field is therefore hardwired to 00 to indicate that the device uses the fastest possible decode. Does not apply to PCI Express and must be hardwired to 00b.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/6 6-7 001 RW 16 fault Oh	6/0/PCI /h l0h 1C, RO, RO bits	- v	
Bit	Access	Reset Value	RST/ PWR	Description	
8	RW1C	ОЬ	Uncore	Master Data Parity Error (PMDPE) This bit is set by a Requester (Primary Side for Type 1 Configuration Space header Function) if the Parity Error Response bit in the Command register is 1b and either of the following two conditions occurs: • Requester receives a Completion marked poisoned • Requester poisons a write Request If the Parity Error Response bit is 0b, this bit is never set. Reset Value of this bit is 0b. This bit will be set only for completions of requests encountering ECC error in DRAM. Poisoned peer-2-peer posted forwarded will not set this bit. They are reported at the receiving port.	
7	RO	0b	Uncore	Fast Back-to-Back (FB2B) Not Applicable or Implemented. Hardwired to 0.	
6	RO	0h		Reserved (RSVD)	
5	RO	0b	Uncore	66/60MHz capability (CAP66) Not Applicable or Implemented. Hardwired to 0.	
4	RO	1b	Uncore	Capabilities List (CAPL) Indicates that a capabilities list is present. Hardwired to 1.	
3	RO-V	ОЬ	Uncore	INTx Status (INTAS) This bit indicates that an interrupt message is pending internally to the device. Only PME and Hot-plug sources feed into this status bit (not PCI INTA-INTD assert and deassert messages). The INTA Assertion Disable bit, PCICMD1[10], has no effect on this bit. INTA emulation interrupts received across the link are not reflected in this bit. Note: PCI Express* Hot-Plug is not supported on the processor.	
2:0	RO	0h		Reserved (RSVD)	

2.10.5 RID—Revision Identification Register

This register contains the revision number of the processor root port. These bits are read only and writes to this register have no effect.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/6/0/PCI 8h 00h RO-FW 8 bits		
Bit	Access	Reset Value	RST/ PWR	Description
7:0	RO-FW	0h	Uncore	Revision Identification Number (RID) This is an 8-bit value that indicates the revision identification number for the root port. Refer to the <i>Desktop 3rd Generation</i> <i>Intel</i> [®] <i>Core™ Processor Family Specification Update</i> for the value of the RID register.

2.10.6 CC-Class Code Register

This register identifies the basic function of the device, a more specific sub-class, and a register- specific programming interface.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/6/0/PCI 9-Bh 060400h RO 24 bits		
Bit	Access	Reset Value	RST/ PWR	Description
23:16	RO	06h	Uncore	Base Class Code (BCC) Indicates the base class code for this device. This code has the value 06h indicating a Bridge device.
15:8	RO	04h	Uncore	Sub-Class Code (SUBCC) Indicates the sub-class code for this device. The code is 04h indicating a PCI to PCI Bridge.
7:0	RO	00h	Uncore	Programming Interface (PI) Indicates the programming interface of this device. This value does not specify a particular register set layout and provides no practical use for this device.

2.10.7 CL—Cache Line Size Register

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/6/0/PCI Ch 00h RW 8 bits		
Bit	Access	Reset Value	RST/ PWR	Description
7:0	RW	00h	Uncore	Cache Line Size (CLS) Implemented by PCI Express devices as a read-write field for legacy compatibility purposes but has no impact on any PCI Express device functionality.

2.10.8 HDR—Header Type Register

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/6/0/PCI Eh 81h RO 8 bits		
Bit	Access	Reset Value	RST/ PWR	Description
7:0	RO	81h	Uncore	Header Type Register (HDR) Device 1 returns 81h to indicate that this is a multi function device with bridge header layout. Device 6 returns 01h to indicate that this is a single function device with bridge header layout.

2.10.9 PBUSN—Primary Bus Number Register

This register identifies that this "virtual" Host-PCI Express* bridge is connected to PCI bus 0.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/6/0/PCI 18h 00h RO 8 bits		
Bit	Access	Reset Value	RST/ PWR	Description
7:0	RO	00h	Uncore	Primary Bus Number (BUSN) Configuration software typically programs this field with the number of the bus on the primary side of the bridge. Since the processor root port is an internal device and its primary bus is always 0, these bits are read only and are hardwired to 0.

2.10.10 SBUSN—Secondary Bus Number Register

This register identifies the bus number assigned to the second bus side of the "virtual" bridge; that is, to PCI Express-G. This number is programmed by the PCI configuration software to allow mapping of configuration cycles to PCI Express-G.

B/D/F/ Address Reset V Access: Size:	B/D/F/Type:0/6/0/PCIAddress Offset:19hReset Value:00hAccess:RWSize:8 bits		its	
Bit	Access	Reset Value	RST/ PWR	Description
7:0	RW	00h	Uncore	Secondary Bus Number (BUSN) This field is programmed by configuration software with the bus number assigned to PCI Express-G.

2.10.11 SUBUSN—Subordinate Bus Number Register

This register identifies the subordinate bus (if any) that resides at the level below PCI Express-G. This number is programmed by the PCI configuration software to allow mapping of configuration cycles to PCI Express-G.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/6/0/PCI 1Ah 00h RW 8 bits		
Bit	Access	Reset Value	RST/ PWR	Description
7:0	RW	00h	Uncore	Subordinate Bus Number (BUSN) This register is programmed by configuration software with the number of the highest subordinate bus that lies behind the processor root port bridge. When only a single PCI device resides on the PCI Express-G segment, this register will contain the same value as the SBUSN1 register.

2.10.12 IOBASE—I/O Base Address Register

This register controls the processor to PCI Express-G I/O access routing based on the following formula:

 $IO_BASE \leq address \leq IO_LIMIT$

Only upper 4 bits are programmable. For the purpose of address decode address bits A[11:0] are treated as 0. Thus the bottom of the defined I/O address range will be aligned to a 4 KB boundary.

B/D/F/ Address Reset Va Access: Size: BIOS Op	Type: 5 Offset: alue: ptimal Def	0/6 1CH FOH RW 8 b fault Oh	6/0/PCI i its	
Bit	Access	Reset Value	RST/ PWR	Description
7:4	RW	Fh	Uncore	I/O Address Base (IOBASE:) This field corresponds to A[15:12] of the I/O addresses passed by the root port to PCI Express-G.
3:0	RO	0h		Reserved (RSVD)

2.10.13 IOLIMIT-I/O Limit Address Register

This register controls the processor to PCI Express-G I/O access routing based on the following formula:

 $IO_BASE \leq address \leq IO_LIMIT$

Only upper 4 bits are programmable. For the purpose of address decode address bits A[11:0] are assumed to be FFFh. Thus, the top of the defined I/O address range will be at the top of a 4 KB aligned address block.

B/D/F/Type:0/Address Offset:11Reset Value:00Access:RSize:8BIOS Optimal Default01		0/6 1DH OOH RW 8 bi fault Oh	o/O/PCI	
Bit	Access	Reset RST/ Value PWR		Description
7:4	RW	0h	Uncore	I/O Address Limit (IOLIMIT) This field corresponds to A[15:12] of the I/O address limit of the root port. Devices between this upper limit and IOBASE1 will be passed to the PCI Express hierarchy associated with this device.
3:0	RO	0h		Reserved (RSVD)

2.10.14 SSTS—Secondary Status Register

SSTS is a 16-bit status register that reports the occurrence of error conditions associated with secondary side (that is, PCI Express-G side) of the "virtual" PCI-PCI bridge embedded within the processor.

B/D/F/Type:0/6Address Offset:1E-Reset Value:000Access:RWSize:16BIOS Optimal Default001		5/0/PCI -1Fh 00h /1C, RO bits 1		
Bit	Access	Reset Value	RST/ PWR	Description
15	RW1C	0b	Uncore	Detected Parity Error (DPE) This bit is set by the Secondary Side for a Type 1 Configuration Space header device whenever it receives a Poisoned TLP, regardless of the state of the Parity Error Response Enable bit in the Bridge Control Register.
14	RW1C	0b	Uncore	Received System Error (RSE) This bit is set when the Secondary Side for a Type 1 configuration space header device receives an ERR_FATAL or ERR_NONFATAL.
13	RW1C	0b	Uncore	Received Master Abort (RMA) This bit is set when the Secondary Side for Type 1 Configuration Space Header Device (for requests initiated by the Type 1 Header Device itself) receives a Completion with Unsupported Request Completion Status.
12	RW1C	0b	Uncore	Received Target Abort (RTA) This bit is set when the Secondary Side for Type 1 Configuration Space Header Device (for requests initiated by the Type 1 Header Device itself) receives a Completion with Completer Abort Completion Status.
11	RO	0b	Uncore	Signaled Target Abort (STA) Not Applicable or Implemented. Hardwired to 0. The processor does not generate Target Aborts (The root port will never complete a request using the Completer Abort Completion status). UR detected inside the processor (such as in iMPH/MC will be reported in primary side status)
10:9	RO	00b	Uncore	DEVSELB Timing (DEVT) Not Applicable or Implemented. Hardwired to 0.
8	RW1C	0b	Uncore	Master Data Parity Error (SMDPE) When set indicates that the processor received across the link (upstream) a Read Data Completion Poisoned TLP (EP=1). This bit can only be set when the Parity Error Enable bit in the Bridge Control register is set.
7	RO	0b	Uncore	Fast Back-to-Back (FB2B) Not Applicable or Implemented. Hardwired to 0.
6	RO	0h		Reserved (RSVD)
5	RO	0b	Uncore	66/60 MHz capability (CAP66) Not Applicable or Implemented. Hardwired to 0.
4:0	RO	0h		Reserved (RSVD)

2.10.15 MBASE—Memory Base Address Register

This register controls the processor to PCI Express-G non-prefetchable memory access routing based on the following formula:

 $MEMORY_BASE \le address \le MEMORY_LIMIT$

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32 bit address. The bottom 4 bits of this register are read-only and return zeroes when read. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory address range will be aligned to a 1 MB boundary.

B/D/F/Type:0/6Address Offset:20-Reset Value:FFFAccess:RWSize:16BIOS Optimal Default0		6/0/PCI -21h 0h bits		
Bit	Access	Reset Value	RST/ PWR	Description
15:4	RW	FFFh	Uncore	Memory Address Base (MBASE) This field corresponds to A[31:20] of the lower limit of the memory range that will be passed to PCI Express-G.
3:0	RO	0h		Reserved (RSVD)

2.10.16 MLIMIT—Memory Limit Address Register

This register controls the processor to PCI Express-G non-prefetchable memory access routing based on the following formula:

 $MEMORY_BASE \le address \le MEMORY_LIMIT$

The upper 12 bits of the register are read/write and correspond to the upper 12 address bits A[31:20] of the 32 bit address. The bottom 4 bits of this register are read-only and return zeroes when read. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined memory address range will be at the top of a 1 MB aligned memory block.

- **Note:** Memory range covered by MBASE and MLIMIT registers are used to map nonprefetchable PCI Express-G address ranges (typically where control/status memorymapped I/O data structures of the graphics controller will reside) and PMBASE and PMLIMIT are used to map prefetchable address ranges (typically graphics local memory). This segregation allows application of USWC space attribute to be performed in a true plug-and-play manner to the prefetchable address range for improved processor-PCI Express memory access performance.
- **Note:** Configuration software is responsible for programming all address range registers (prefetchable, non-prefetchable) with the values that provide exclusive address ranges; that is, prevent overlap with each other and/or with the ranges covered with the main memory. There is no provision in the processor hardware to enforce prevention of overlap and operations of the system in the case of overlap are not ensured.

B/D/F/Type:0/Address Offset:22Reset Value:00Access:RVSize:16BIOS Optimal Default0h		5/0/PCI -23h 00h bits		
Bit	Access	Reset Value	RST/ PWR	Description
15:4	RW	000h	Uncore	Memory Address Limit (MLIMIT) This field corresponds to A[31:20] of the upper limit of the address range passed to PCI Express-G.
3:0	RO	0h		Reserved (RSVD)

2.10.17 PMBASE—Prefetchable Memory Base Address Register

This register in conjunction with the corresponding Upper Base Address register controls the processor to PCI Express-G prefetchable memory access routing based on the following formula:

PREFETCHABLE_MEMORY_BASE < address < PREFETCHABLE_MEMORY_LIMIT

The upper 12 bits of this register are read/write and correspond to address bits A[31:20] of the 40-bit address. The lower 8 bits of the Upper Base Address register are read/write and correspond to address bits A[39:32] of the 40-bit address. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory address range will be aligned to a 1 MB boundary.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/6/0/PCI 24–25h FFF1h RW, RO 16 bits		
Bit	Access	Reset Value	RST/ PWR	Description
15:4	RW	FFFh	Uncore	Prefetchable Memory Base Address (PMBASE) This field corresponds to A[31:20] of the lower limit of the memory range that will be passed to PCI Express-G.
3:0	RO	1h	Uncore	64-bit Address Support (AS64) This field indicates that the upper 32 bits of the prefetchable memory region base address are contained in the Prefetchable Memory base Upper Address register at 28h.

2.10.18 PMLIMIT—Prefetchable Memory Limit Address Register

This register in conjunction with the corresponding Upper Limit Address register controls the processor to PCI Express-G prefetchable memory access routing based on the following formula:

PREFETCHABLE_MEMORY_BASE < address < PREFETCHABLE_MEMORY_LIMIT

The upper 12 bits of this register are read/write and correspond to address bits A[31:20] of the 40-bit address. The lower 8 bits of the Upper Limit Address register are read/write and correspond to address bits A[39:32] of the 40-bit address. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined memory address range will be at the top of a 1 MB aligned memory block.

Note: Prefetchable memory range is supported to allow segregation by the configuration software between the memory ranges that must be defined as UC and the ones that can be designated as a USWC (that is, prefetchable) from the processor perspective.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/6/0/PCI 26-27h 0001h RW, RO 16 bits		
Bit	Access	Reset Value	RST/ PWR	Description
15:4	RW	000h	Uncore	Prefetchable Memory Address Limit (PMLIMIT) This field corresponds to A[31:20] of the upper limit of the address range passed to PCI Express-G.
3:0	RO	1h	Uncore	64-bit Address Support (AS64B) This field indicates that the upper 32 bits of the prefetchable memory region limit address are contained in the Prefetchable Memory Base Limit Address register at 2Ch

2.10.19 PMBASEU—Prefetchable Memory Base Address Upper Register

The functionality associated with this register is present in the PEG design implementation. This register in conjunction with the corresponding Upper Base Address register controls the processor to PCI Express-G prefetchable memory access routing based on the following formula:

PREFETCHABLE_MEMORY_BASE < address < PREFETCHABLE_MEMORY_LIMIT

The upper 12 bits of this register are read/write and correspond to address bits A[31:20] of the 39-bit address. The lower 7 bits of the Upper Base Address register are read/write and correspond to address bits A[38:32] of the 39-bit address. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be 0. Thus, the bottom of the defined memory address range will be aligned to a 1 MB boundary.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/6/0/PCI 28–2Bh 00000000h RW 32 bits		
Bit	Access	Reset RST/ Value PWR		Description
31:0	RW	00000000h	Uncore	Prefetchable Memory Base Address (PMBASEU) This field corresponds to A[63:32] of the lower limit of the prefetchable memory range that will be passed to PCI Express- G.

2.10.20 PMLIMITU—Prefetchable Memory Limit Address Upper Register

The functionality associated with this register is present in the PEG design implementation.

This register, in conjunction with the corresponding Upper Limit Address register, controls the processor to PCI Express-G prefetchable memory access routing based on the following formula:

PREFETCHABLE_MEMORY_BASE ≤ address ≤ PREFETCHABLE_MEMORY_LIMIT

The upper 12 bits of this register are read/write and correspond to address bits A[31:20] of the 39-bit address. The lower 7 bits of the Upper Limit Address register are read/write and correspond to address bits A[38:32] of the 39-bit address. This register must be initialized by the configuration software. For the purpose of address decode, address bits A[19:0] are assumed to be FFFFFh. Thus, the top of the defined memory address range will be at the top of a 1 MB aligned memory block.

Note: Prefetchable memory range is supported to allow segregation by the configuration software between the memory ranges that must be defined as UC and the ones that can be designated as a USWC (that is, prefetchable) from the processor perspective.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/6/0/PCI 2C-2Fh 00000000h RW 32 bits		
Bit	Access	Reset Value	RST/ PWR	Description
31:0	RW	00000000h	Uncore	Prefetchable Memory Address Limit (PMLIMITU) This field corresponds to A[63:32] of the upper limit of the prefetchable Memory range that will be passed to PCI Express-G.

2.10.21 CAPPTR-Capabilities Pointer Register

The capabilities pointer provides the address offset to the location of the first entry in this device's linked list of capabilities.

B/D/F/ Address Reset V Access: Size:	D/F/Type: 0/6/0/PCI dress Offset: 34h set Value: 88h sess: RO e: 8 bits		6/0/PCI 1 its	
Bit	Access	Reset Value	RST/ PWR	Description
7:0	RO	88h	Uncore	First Capability (CAPPTR1) The first capability in the list is the Subsystem ID and Subsystem Vendor ID Capability.

2.10.22 INTRLINE—Interrupt Line Register

This register contains interrupt line routing information. The device itself does not use this value; rather it is used by device drivers and operating systems to determine priority and vector information.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/6/0/PCI 3Ch 00h RW 8 bits		
Bit	Access	Reset Value	RST/ PWR	Description
				Interrupt Connection (INTCON)
				This field is used to communicate interrupt line routing information.
7:0	RW	00h	Uncore	BIOS Requirement: POST software writes the routing information into this register as it initializes and configures the system. The value indicates to which input of the system interrupt controller this device's interrupt pin is connected.

2.10.23 INTRPIN—Interrupt Pin Register

This register specifies which interrupt pin this device uses.

B/D/F/Type:0/6Address Offset:3DFReset Value:01FAccess:RWSize:8 b		5/0/PCI 1 1-0, RO its		
Bit	Access	Reset Value	RST/ PWR	Description
7:3	RO	00h	Uncore	Reserved (RSVD)
2:0	RW-O	1h	Uncore	Interrupt Pin (INTPIN) As a multifunction device, the PCI Express device may specify any INTx (x=A,B,C,D) as its interrupt pin. The Interrupt Pin register tells which interrupt pin the device (or device function) uses. A value of 1 corresponds to INTA# (Default) A value of 2 corresponds to INTB# A value of 3 corresponds to INTC# A value of 4 corresponds to INTD# Devices (or device functions) that do not use an interrupt pin must put a 0 in this register. The values 05h through FFh are reserved. This register is write once. BIOS must set this register to select the INTx to be used by this root port.

2.10.24 BCTRL—Bridge Control Register

This register provides extensions to the PCICMD register that are specific to PCI-PCI bridges. The BCTRL provides additional control for the secondary interface (that is, PCI Express-G) as well as some bits that affect the overall behavior of the "virtual" Host-PCI Express bridge embedded within the processor; such as VGA compatible address ranges mapping.

B/D/F/Type:0/6/Address Offset:3E-2Reset Value:0000Access:RO,Size:16 bBIOS Optimal Default0h		5/0/PCI -3Fh 00h , RW bits		
Bit	Access	Reset Value	RST/ PWR	Description
15:12	RO	0h		Reserved (RSVD)
11	RO	0b	Uncore	Discard Timer SERR# Enable (DTSERRE) Not Applicable or Implemented. Hardwired to 0.
10	RO	0b	Uncore	Discard Timer Status (DTSTS) Not Applicable or Implemented. Hardwired to 0.
9	RO	0b	Uncore	Secondary Discard Timer (SDT) Not Applicable or Implemented. Hardwired to 0.
8	RO	0b	Uncore	Primary Discard Timer (PDT) Not Applicable or Implemented. Hardwired to 0.
7	RO	0b	Uncore	Fast Back-to-Back Enable (FB2BEN) Not Applicable or Implemented. Hardwired to 0.

B/D/F/Type:0/6/0/PCIAddress Offset:3E-3FhReset Value:0000hAccess:RO, RWSize:16 bitsBIOS Optimal Default0h		5/0/PCI -3Fh 00h RW bits		
Bit	Access	Reset Value	RST/ PWR	Description
6	RW	0b	Uncore	Secondary Bus Reset (SRESET) Setting this bit triggers a hot reset on the corresponding PCI Express Port. This will force the LTSSM to transition to the Hot Reset state (using Recovery) from L0, L0s, or L1 states.
5	RO	0b	Uncore	Master Abort Mode (MAMODE) Does not apply to PCI Express. Hardwired to 0.
4	RW	Ob	Uncore	VGA 16-bit Decode (VGA16D) Enables the PCI-to-PCI bridge to provide 16-bit decoding of VGA I/O address precluding the decoding of alias addresses every 1 KB. This bit only has meaning if bit 3 (VGA Enable) of this register is also set to 1, enabling VGA I/O decoding and forwarding by the bridge. 0 = Execute 10-bit address decodes on VGA I/O accesses. 1 = Execute 16-bit address decodes on VGA I/O accesses.
3	RW	0b	Uncore	VGA Enable (VGAEN) Controls the routing of processor initiated transactions targeting VGA compatible I/O and memory address ranges. See the VGAEN/MDAP table in device 0, offset 97h[0].
2	RW	Ob	Uncore	 ISA Enable (ISAEN) Needed to exclude legacy resource decode to route ISA resources to legacy decode path. Modifies the response by the root port to an I/O access issued by the processor that target ISA I/O addresses. This applies only to I/O addresses that are enabled by the IOBASE and IOLIMIT registers. 0 = All addresses defined by the IOBASE and IOLIMIT for processor I/O transactions will be mapped to PCI Express-G. 1 = The root port will not forward to PCI Express-G any I/O transactions addresses are within the range defined by the IOBASE and IOLIMIT registers.
1	RW	Ob	Uncore	 SERR Enable (SERREN) 0 = No forwarding of error messages from secondary side to primary side that could result in an SERR. 1 = ERR_COR, ERR_NONFATAL, and ERR_FATAL messages result in SERR message when individually enabled by the Root Control register.
0	RW	Оb	Uncore	 Parity Error Response Enable (PEREN) Controls whether or not the Master Data Parity Error bit in the Secondary Status register is set when the root port receives across the link (upstream) a Read Data Completion Poisoned TLP 0 = Master Data Parity Error bit in Secondary Status register can NOT be set. 1 = Master Data Parity Error bit in Secondary Status register CAN be set.

2.10.25 PM_CAPID—Power Management Capabilities Register

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/6/0/PCI 80-83h C8039001h RO, RO-V 32 bits		
Bit	Access	Reset Value	RST/ PWR	Description
31:27	RO	19h	Uncore	PME Support (PMES) This field indicates the power states in which this device may indicate PME wake using PCI Express messaging. D0, D3hot & D3cold. This device is not required to do anything to support D3hot & D3cold; it simply must report that those states are supported. Refer to the PCI Power Management 1.1 specification for encoding explanation and other power management details.
26	RO	0b	Uncore	D2 Power State Support (D2PSS) Hardwired to 0 to indicate that the D2 power management state is NOT supported.
25	RO	0b	Uncore	D1 Power State Support (D1PSS) Hardwired to 0 to indicate that the D1 power management state is NOT supported.
24:22	RO	000b	Uncore	Auxiliary Current (AUXC) Hardwired to 0 to indicate that there are no 3.3Vaux auxiliary current requirements.
21	RO	0b	Uncore	Device Specific Initialization (DSI) Hardwired to 0 to indicate that special initialization of this device is NOT required before generic class device driver is to use it.
20	RO	0b	Uncore	Auxiliary Power Source (APS) Hardwired to 0.
19	RO	0b	Uncore	PME Clock (PMECLK) Hardwired to 0 to indicate this device does NOT support PME# generation.
18:16	RO	011b	Uncore	PCI PM CAP Version (PCIPMCV) A value of 011b indicates that this function complies with revision 1.2 of the PCI Power Management Interface SpecificationWas Previously Hardwired to 02h to indicate there are 4 bytes of power management registers implemented and that this device complies with revision 1.1 of the PCI Power Management Interface Specification.
15:8	RO-V	90h	Uncore	Pointer to Next Capability (PNC) This contains a pointer to the next item in the capabilities list. If MSICH (CAPL[0] @ 7Fh) is 0, then the next item in the capabilities list is the Message Signaled Interrupts (MSI) capability at 90h. If MSICH (CAPL[0] @ 7Fh) is 1, then the next item in the capabilities list is the PCI Express capability at A0h.
7:0	RO	01h	Uncore	Capability ID (CID) Value of 01h identifies this linked list item (capability structure) as being for PCI Power Management registers.

2.10.26 PM_CS-Power Management Control/Status Register

B/D/F/Type:0/6/0/PCIAddress Offset:84–87hReset Value:00000008hAccess:RO, RWSize:32 bitsBIOS Optimal Default000000h			5/0/PCI -87h 000008h , RW bits 0000h	
Bit	Access	Reset Value	RST/ PWR	Description
31:16	RO	0h		Reserved (RSVD)
15	RO	0b	Uncore	PME Status (PMESTS) This bit indicates that this device does not support PME# generation from D3cold.
14:13	RO	00b	Uncore	Data Scale (DSCALE) This field indicates that this device does not support the power management data register.
12:9	RO	0h	Uncore	Data Select (DSEL) This field indicates that this device does not support the power management data register.
8	RW	Оb	Uncore	 PME Enable (PMEE) This bit indicates that this device does not generate PME# assertion from any D-state. 0 = PME# generation not possible from any D State 1 = PME# generation enabled from any D State The setting of this bit has no effect on hardware. See PM_CAP[15:11]
7:4	RO	0h		Reserved (RSVD)
3	RO	1b	Uncore	No Soft Reset (NSR) When set to 1 this bit indicates that the device is transitioning from D3hot to D0 because the power state commands do not perform an internal reset. Configuration context is preserved. Upon transition no additional operating system intervention is required to preserve configuration context beyond writing the power state bits. When clear, the devices do not perform an internal reset upon transitioning from D3hot to D0 using software control of the power state bits. Regardless of this bit the devices that transition from a D3hot to D0 by a system or bus segment reset will return to the device state D0 uninitialized with only PME context preserved if PME is supported and enabled.
2	RO	0h		Reserved (RSVD)

B/D/F/ Address Reset Va Access: Size: BIOS Op	Type: Offset: alue: otimal Def	0/6 84- 000 RO, 32 fault 000	6/0/PCI -87h 100008h RW bits 1000h	
Bit	Access	Reset Value	RST/ PWR	Description
1:0	RW	00b	Uncore	 Power State (PS) This field indicates the current power state of this device and can be used to set the device into a new power state. If software attempts to write an unsupported state to this field, write operation must complete normally on the bus, but the data is discarded and no state change occurs. 00 = D0 01 = D1 (Not supported in this device.) 10 = D2 (Not supported in this device.) 11 = D3 Support of D3cold does not require any special action. While in the D3hot state, this device can only act as the target of PCI configuration transactions (for power management control). This device also cannot generate interrupts or respond to MMR cycles in the D3 state. The device must return to the D0 state in order to be fully-functional. When the Power State is other than D0, the bridge will Master Abort (that is, not claim) any downstream cycles (with exception of type 0 configuration cycles). Consequently, these unclaimed cycles will go down DMI and come back up as Unsupported Requests, which the processor logs as Master Aborts in Device 0 PCISTS[13] There is no additional hardware functionality required to support these Power States.

2.10.27 SS_CAPID—Subsystem ID and Vendor ID Capabilities Register

This capability is used to uniquely identify the subsystem where the PCI device resides. Because this device is an integrated part of the system and not an add-in device, it is anticipated that this capability will never be used. However, it is necessary because Microsoft will test for its presence.

B/D/F/Type:0/6/0Address Offset:88-88Reset Value:00008Access:ROSize:32 bitsBIOS Optimal Default0000h			5/0/PCI -8Bh 00800Dh bits 00h	
Bit	Access	Reset Value	RST/ PWR	Description
31:16	RO	0h		Reserved (RSVD)
15:8	RO	80h	Uncore	Pointer to Next Capability (PNC) This field contains a pointer to the next item in the capabilities list which is the PCI Power Management capability.
7:0	RO	0Dh	Uncore	Capability ID (CID) Value of 0Dh identifies this linked list item (capability structure) as being for SSID/SSVID registers in a PCI-to-PCI Bridge.

2.10.28 SS—Subsystem ID and Subsystem Vendor ID Register

System BIOS can be used as the mechanism for loading the SSID/SVID values. These values must be preserved through power management transitions and a hardware reset.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/6/0/PCI 8C-8Fh 00008086h RW-0 32 bits		
Bit	Access	Reset Value	RST/ PWR	Description
31:16	RW-O	0000h	Uncore	Subsystem ID (SSID) Identifies the particular subsystem and is assigned by the vendor.
15:0	RW-O	8086h	Uncore	Subsystem Vendor ID (SSVID) Identifies the manufacturer of the subsystem and is the same as the vendor ID which is assigned by the PCI Special Interest Group.

2.10.29 MSI_CAPID—Message Signaled Interrupts Capability ID Register

When a device supports MSI it can generate an interrupt request to the processor by writing a predefined data item (a message) to a predefined memory address.

The reporting of the existence of this capability can be disabled by setting MSICH (CAPL[0] @ 7Fh). In that case walking this linked list will skip this capability and instead go directly from the PCI PM capability to the PCI Express* capability.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/6/0/PCI 90–91h A005h RO 16 bits		
Bit	Access	Reset Value	RST/ PWR	Description
15:8	RO	A0h	Uncore	Pointer to Next Capability (PNC) This field contains a pointer to the next item in the capabilities list which is the PCI Express capability.
7:0	RO	05h	Uncore	Capability ID (CID) Value of 05h identifies this linked list item (capability structure) as being for MSI registers.

2.10.30 MC-Message Control Register

System software can modify bits in this register, but the device is prohibited from doing so.

If the device writes the same message multiple times, only one of those messages is ensured to be serviced. If all of them must be serviced, the device must not generate the same message again until the driver services the earlier one.

B/D/F/Type:0/6/0/PCIAddress Offset:92–93hReset Value:0000hAccess:RO, RWSize:16 bitsBIOS Optimal Default00h			5/0/PCI -93h 00h , RW bits 1	
Bit	Access	Reset Value	RST/ PWR	Description
15:8	RO	0h		Reserved (RSVD)
7	RO	Оb	Uncore	64-bit Address Capable (B64AC) Hardwired to 0 to indicate that the function does not implement the upper 32 bits of the Message Address register and is incapable of generating a 64-bit memory address. This may need to change in future implementations when addressable system memory exceeds the 32b/4 GB limit.

B/D/F/Type:0/6Address Offset:92-Reset Value:000Access:RO,Size:16BIOS Optimal Default006		5/0/PCI -93h 00h , RW bits 1		
Bit	Access	Reset Value	RST/ PWR	Description
6:4	RW	000b	Uncore	Multiple Message Enable (MME) System software programs this field to indicate the actual number of messages allocated to this device. This number will be equal to or less than the number actually requested. The encoding is the same as for the MMC field below.
3:1	RO	000Ь	Uncore	Multiple Message Capable (MMC) System software reads this field to determine the number of messages being requested by this device. 000 = 1 All of the following are reserved in this implementation: 001 = 2 010 = 4 011 = 8 100 = 16 101 = 32 110 = Reserved 111 = Reserved
0	RW	Ob	Uncore	MSI Enable (MSIEN) This bit controls the ability of this device to generate MSIs. 0 = MSI will not be generated. 1 = MSI will be generated when we receive PME messages. INTA will not be generated and INTA Status (PCISTS1[3]) will not be set.

2.10.31 MA-Message Address Register

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/6/0/PCI 94-97h 00000000h RW, RO 32 bits		
Bit	Access	Reset Value	RST/ PWR	Description
31:2	RW	00000000h	Uncore	Message Address (MA) Used by system software to assign an MSI address to the device. The device handles an MSI by writing the padded contents of the MD register to this address.
1:0	RO	00b	Uncore	Force DWord Align (FDWA) Hardwired to 0 so that addresses assigned by system software are always aligned on a DWord address boundary.

2.10.32 MD-Message Data Register

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/6/0/PCI 98–99h 0000h RW 16 bits		
Bit	Access	Reset Value	RST/ PWR	Description
15:0	RW	0000h	Uncore	Message Data (MD) Base message data pattern assigned by system software and used to handle an MSI from the device. When the device must generate an interrupt request, it writes a 32-bit value to the memory address specified in the MA register. The upper 16 bits are always set to 0. The lower 16 bits are supplied by this register.

2.10.33 PEG_CAPL—PCI Express-G Capability List Register

This register enumerates the PCI Express* capability structure.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/6/0/PCI A0-A1h 0010h R0 16 bits		
Bit	Access	Reset Value	RST/ PWR	Description
15:8	RO	00h	Uncore	Pointer to Next Capability (PNC) This value terminates the capabilities list. The Virtual Channel capability and any other PCI Express specific capabilities that are reported using this mechanism are in a separate capabilities list located entirely within PCI Express Extended Configuration Space.
7:0	RO	10h	Uncore	Capability ID (CID) This field identifies this linked list item (capability structure) as being for PCI Express registers.

E

2.10.34 PEG_CAP-PCI Express-G Capabilities Register

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/6/0/PCI A2-A3h 0142h RO, RW-O 16 bits ault 0h		
Bit	Access	Reset Value	RST/ PWR	Description
15:14	RO	0h		Reserved (RSVD)
13:9	RO	00h	Uncore	Interrupt Message Number (IMN) Not Applicable or Implemented. Hardwired to 0.
8	RW-O	1b	Uncore	 Slot Implemented (SI) 0 = The PCI Express Link associated with this port is connected to an integrated component or is disabled. 1 = The PCI Express Link associated with this port is connected to a slot. BIOS Requirement: This field must be initialized appropriately if a slot connection is not implemented.
7:4	RO	4h	Uncore	Device/Port Type (DPT) Hardwired to 4h to indicate root port of PCI Express Root Complex.
3:0	RO	2h	Uncore	PCI Express Capability Version (PCIECV) Hardwired to 2h to indicate compliance to the PCI Express Capabilities Register Expansion ECN.

This register indicates PCI Express* device capabilities.

2.10.35 DCAP-Device Capabilities Register

This register indicates PCI Express* device capabilities.

B/D/F/Type:0/6Address Offset:A4-Reset Value:000Access:RO,Size:32BIOS Optimal Default000		5/0/PCI -A7h 008000h RW-0 bits 00000h		
Bit	Access	Reset Value	RST/ PWR	Description
31:16	RO	0h		Reserved (RSVD)
15	RO	1b	Uncore	Role Based Error Reporting (RBER) This bit indicates that this device implements the functionality defined in the Error Reporting ECN as required by the PCI Express 1.1 specification.
14:6	RO	0h		Reserved (RSVD)
5	RO	0b	Uncore	Extended Tag Field Supported (ETFS) Hardwired to indicate support for 5-bit Tags as a Requestor.
4:3	RO	00b	Uncore	Phantom Functions Supported (PFS) Not Applicable or Implemented. Hardwired to 0.
2:0	RW-O	000b	Uncore	Max Payload Size (MPS) Default indicates 128B max supported payload for Transaction Layer Packets (TLP.).

2.10.36 DCTL-Device Control Register

This register provides control for PCI Express* device specific capabilities.

The error reporting enable bits are in reference to errors detected by this device, not error messages received across the link. The reporting of error messages (ERR_CORR, ERR_NONFATAL, ERR_FATAL) received by Root Port is controlled exclusively by Root Port Command Register.

B/D/F/Type:0/6Address Offset:A8-Reset Value:000Access:RO,Size:16BIOS Optimal Default0h		5/0/PCI -A9h D0h , RW bits		
Bit	Access	Reset Value	RST/ PWR	Description
15	RO	0h		Reserved (RSVD)
14:12	RO	000b	Uncore	Reserved for Max Read Request Size (MRRS)
11	RO	0b	Uncore	Reserved for Enable No Snoop (NSE)
10:5	RO	0h		Reserved (RSVD)
4	RO	0b	Uncore	Reserved for Enable Relaxed Ordering (ROE)
3	RW	Оb	Uncore	Unsupported Request Reporting Enable (URRE) When set, this bit allows signaling ERR_NONFATAL, ERR_FATAL, or ERR_CORR to the Root Control register when detecting an unmasked Unsupported Request (UR). An ERR_CORR is signaled when an unmasked Advisory Non-Fatal UR is received. An ERR_FATAL or ERR_NONFATAL is sent to the Root Control register when an uncorrectable non-Advisory UR is received with the severity bit set in the Uncorrectable Error Severity register.
2	RW	0b	Uncore	Fatal Error Reporting Enable (FERE) When set, this bit enables signaling of ERR_FATAL to the Root Control register due to internally detected errors or error messages received across the link. Other bits also control the full scope of related error reporting.
1	RW	0b	Uncore	Non-Fatal Error Reporting Enable (NERE) When set, this bit enables signaling of ERR_NONFATAL to the Root Control register due to internally detected errors or error messages received across the link. Other bits also control the full scope of related error reporting.
0	RW	0b	Uncore	Correctable Error Reporting Enable (CERE) When set, this bit enables signaling of ERR_CORR to the Root Control register due to internally detected errors or error messages received across the link. Other bits also control the full scope of related error reporting.

2.10.37 DSTS-Device Status Register

This register reflects status corresponding to controls in the Device Control register. The error reporting bits are in reference to errors detected by this device, not errors messages received across the link.

B/D/F/Type:0/Address Offset:A/Reset Value:00Access:RoSize:10BIOS Optimal Default00		0/6 AA- 000 RO, 16 fault 000	5/0/PCI -ABh D0h , RW1C bits Dh	
Bit	Access	Reset Value	RST/ PWR	Description
15:6	RO	0h		Reserved (RSVD)
5	RO	Ob	Uncore	 Transactions Pending (TP) 0 = All pending transactions (including completions for any outstanding non-posted requests on any used virtual channel) have been completed. 1 = Indicates that the device has transaction(s) pending (including completions for any outstanding non-posted requests for all used Traffic Classes). Not Applicable or Implemented. Hardwired to 0.
4	RO	0h		Reserved (RSVD)
3	RW1C	Ob	Uncore	Unsupported Request Detected (URD) This bit indicates that the Function received an Unsupported Request. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register. For a multi-Function device, each Function indicates status of errors as perceived by the respective Function.
2	RW1C	0b	Uncore	Fatal Error Detected (FED) This bit indicates status of Fatal errors detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register. For a multi-Function device, each Function indicates status of errors as perceived by the respective Function.
1	RW1C	0b	Uncore	Non-Fatal Error Detected (NFED) This bit indicates status of Nonfatal errors detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register. For a multi- Function device, each Function indicates status of errors as perceived by the respective Function
0	RW1C	0b	Uncore	Correctable Error Detected (CED) This bit indicates status of correctable errors detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register. For a multi-Function device, each Function indicates status of errors as perceived by the respective Function.

2.10.38 LCAP—Link Capabilities Register

This register indicates PCI Express* device-specific capabilities.

B/D/F/ Address Reset V Access: Size: BIOS O	Type: 5 Offset: alue: ptimal De	0/6 AC- 052 RO 32 fault Oh	5/0/PCI -AFh 21CC42h , RW-O, RC bits	D-V, RW-OV
Bit	Access	Reset Value	RST/ PWR	Description
31:24	RO	05h	Uncore	Port Number (PN) Indicates the PCI Express port number for the given PCI Express link. Matches the value in Element Self Description[31:24]. The value if this field differs between root ports 2h = device 1 Function 0 3h = device 1 Function 1 4h = device 1 Function 2 5h = device 6 Function 0
23:22	RO	0h		Reserved (RSVD)
21	RO	1b	Uncore	Link Bandwidth Notification Capability (LBNC) A value of 1b indicates support for the Link Bandwidth Notification status and interrupt mechanisms. This capability is required for all Root Ports and Switch downstream ports supporting Links wider than x1 and/or multiple Link speeds. This field is not applicable and is reserved for Endpoint devices, PCI Express to PCI/PCI-X bridges, and Upstream Ports of Switches. Devices that do not implement the Link Bandwidth Notification capability must hardwire this bit to 0b.
20	RO	Оb	Uncore	Data Link Layer Link Active Reporting Capable (DLLLARC)For a Downstream Port, this bit must be set to 1b if the component supports the optional capability of reporting the DL_Active state of the Data Link Control and Management State Machine. For a hot-plug capable Downstream Port (as indicated by the Hot-Plug Capable field of the Slot Capabilities register), this bit must be set to 1b.For Upstream Ports and components that do not support this optional capability, this bit must be hardwired to 0b.Note:PCI Express* Hot-Plug is not supported on the processor.
19	RO	0b	Uncore	Surprise Down Error Reporting Capable (SDERC) For a Downstream Port, this bit must be set to 1b if the component supports the optional capability of detecting and reporting a Surprise Down error condition. For Upstream Ports and components that do not support this optional capability, this bit must be hardwired to 0b.
18	RO	ОЬ	Uncore	Clock Power Management (CPM) A value of 1b in this bit indicates that the component tolerates the removal of any reference clock(s) when the link is in the L1 and L2/3 Ready link states. A value of 0b indicates the component does not have this capability and that reference clock(s) must not be removed in these link states. This capability is applicable only in form factors that support "clock request" (CLKREQ#) capability. For a multi-function device, each function indicates its capability independently. Power Management configuration software must only permit reference clock removal if all functions of the multifunction device indicate a 1b in this bit.
17:15	RO	0h		Reserved (RSVD)

B/D/F/Type:0//Address Offset:ACReset Value:05Access:ROSize:32BIOS Optimal Default0h		0/6 AC- 052 RO, 32 fault Oh	6/0/PCI -AFh 21CC42h RW-0, RO bits)-V, RW-OV
Bit	Access	Reset Value	RST/ PWR	Description
14:12	RO-V	100b	Uncore	LOS Exit Latency (LOSELAT) This field indicates the length of time this Port requires to complete the transition from L0s to L0. 000 = Less than 64 ns 001 = 64 ns to less than 128 ns 010 = 128 ns to less than 256 ns 011 = 256 ns to less than 512 ns 100 = 512 ns to less than 1 us 101 = 1 us to less than 2 us 110 = 2 us - 4 us 111 = More than 4 us The actual value of this field depends on the common Clock Configuration bit (LCTL[6]) and the Common and Non-Common clock L0s Exit Latency values in LOSLAT (Offset 22Ch)
11:10	RW-O	11b	Uncore	Active State Link PM Support (ASLPMS) Root port supports ASPM LOs and L1.
9:4	RW-OV	04h	Uncore	Max Link Width (MLW): This field indicates the maximum number of lanes supported for this link.
3:0	RO	0h		Reserved (RSVD)

2.10.39 LCTL-Link Control Register

This register allows control of PCI Express* link.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/6 B0- 000 R0, 16 fault 00f	5/0/PCI -B1h)0h , RW, RW-\ bits 1	/
Bit	Access	Reset Value	RST/ PWR	Description
15:12	RO	0h		Reserved (RSVD)
11	RW	0b	Uncore	Link Autonomous Bandwidth Interrupt Enable (LABIE) When set, this bit enables the generation of an interrupt to indicate that the Link Autonomous Bandwidth Status bit has been set. This bit is not applicable and is reserved for Endpoint devices, PCI Express to PCI/PCI-X bridges, and Upstream Ports of Switches. Devices that do not implement the Link Bandwidth Notification capability must hardwire this bit to 0b.
10	RW	0b	Uncore	Link Bandwidth Management Interrupt Enable (LBMIE) Link Bandwidth Management Interrupt Enable – When set, this bit enables the generation of an interrupt to indicate that the Link Bandwidth Management Status bit has been set. This bit is not applicable and is reserved for Endpoint devices, PCI Express to PCI/PCI-X bridges, and Upstream Ports of Switches.
9	RW	0b	Uncore	Hardware Autonomous Width Disable (HAWD) When set, this bit disables hardware from changing the Link width for reasons other than attempting to correct unreliable Link operation by reducing Link width. Devices that do not implement the ability autonomously to change Link width are permitted to hardwire this bit to 0b.
8	RO	ОЬ	Uncore	 Enable Clock Power Management (ECPM) Applicable only for form factors that support a "Clock Request" (CLKREQ#) mechanism, this enable functions as follows: 0 = Clock power management is disabled and device must hold CLKREQ# signal low 1 = When this bit is set to 1 the device is permitted to use CLKREQ# signal to power manage link clock according to protocol defined in appropriate form factor specification. Reset Value of this field is 0b. Components that do not support Clock Power Management (as indicated by a 0b value in the Clock Power Management bit of the Link Capabilities Register) must hardwire this bit to 0b.
7	RW	ОЬ	Uncore	 Extended Synch (ES): 0 = Standard Fast Training Sequence (FTS). 1 = Forces the transmission of additional ordered sets when exiting the L0s state and when in the Recovery state. This mode provides external devices (such as logic analyzers) monitoring the Link time to achieve bit and symbol lock before the link enters L0 and resumes communication. This is a test mode only and may cause other undesired side effects such as buffer overflows or underruns.

B/D/F/ Address Reset V Access: Size: BIOS Op	Type: 5 Offset: alue: otimal De	0/6 B0- 000 R0, 16 fault 00f	6/0/PCI -B1h OOh RW, RW-\ bits	/
Bit	Access	Reset Value	RST/ PWR	Description
				Common Clock Configuration (CCC)
				0 = This component and the component at the opposite end of this Link are operating with asynchronous reference clock.
6	RW	0b	Uncore	1 = This component and the component at the opposite end of this Link are operating with a distributed common reference clock
				The state of this bit affects the L0s Exit Latency reported in LCAP[14:12] and the N_FTS value advertised during link training. See L0SLAT at offset 22Ch.
				Retrain Link (RL)
				0 = Normal operation.
5	RW-V	0b	Uncore	1 = Full Link retraining is initiated by directing the Physical Layer LTSSM from L0, L0s, or
				L1 states to the Recovery state.
				This bit always returns 0 when read. This bit is cleared automatically (no need to write a 0).
				Link Disable (LD):
				0 = Normal operation
4	RW	0b	Uncore	 1 = Link is disabled. Forces the LTSSM to transition to the Disabled state (using Recovery) from L0, L0s, or L1 states. Link retraining happens automatically on 0 to 1 transition, just like when coming out of reset.
				Writes to this bit are immediately reflected in the value read from the bit, regardless of actual Link state.
				After clearing this bit, software must honor timing requirements defined in the PCIe Specification, Section 6.6.1 with respect to the first Configuration Read following a Conventional Reset.
3	RO	0b	Uncore	Read Completion Boundary (RCB)
			5110010	Hardwired to 0 to indicate 64 byte.
2	RO	0h		Reserved (RSVD)
				Active State PM (ASPM):
1:0	RW	00b	Uncore	This field controls the level of ASPM (Active State Power Management) supported on the given PCI Express Link.

2.10.40 LSTS-Link Status Register

This register indicates PCI Express* link status.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/6 B2- 100 RW 16 fault Oh	5/0/PCI -B3h 01h /1C, RO-V, bits	RO
Bit	Access	Reset Value	RST/ PWR	Description
15	RW1C	0b	Uncore	Link Autonomous Bandwidth Status (LABWS) This bit is set to 1b by hardware to indicate that hardware has autonomously changed link speed or width, without the port transitioning through DL_Down status, for reasons other than to attempt to correct unreliable link operation.
				change was initiated by the downstream component that was indicated as an autonomous change.
				Link Bandwidth Management Status (LBWMS)
				This bit is set to 1b by hardware to indicate that either of the following has occurred without the port transitioning through DL_Down status:
				A link retraining initiated by a write of 1b to the Retrain Link bit has completed.
14	RW1C	ОЬ	Uncore	Note: This bit is set following any write of 1b to the Retrain Link bit, including when the Link is in the process of retraining for some other reason.
				Hardware has autonomously changed link speed or width to attempt to correct unreliable link operation, either through an LTSSM timeout or a higher level process.
				This bit must be set if the Physical Layer reports a speed or width change was initiated by the downstream component that was not indicated as an autonomous change.
				Data Link Layer Link Active (Optional) (DLLLA)
13	RO-V	0b	Uncore	This bit indicates the status of the Data Link Control and Management State Machine. It returns a 1b to indicate the DL_Active state, 0b otherwise.
				This bit must be implemented if the corresponding Data Link Layer Active Capability bit is implemented. Otherwise, this bit must be hardwired to 0b.
				Slot Clock Configuration (SCC)
12	RO	1b	Uncore	0 = The device uses an independent clock irrespective of the presence of a reference on the connector.
				1 = The device uses the same physical reference clock that the platform provides on the connector.
11	RO-V	0b	Uncore	Link Training (LTRN) This bit indicates that the Physical Layer LTSSM is in the Configuration or Recovery state, or that 1b was written to the Retrain Link bit but Link training has not yet begun. Hardware clears this bit when the LTSSM exits the Configuration/Recovery state once Link training is complete.

B/D/F/Type:OAddress Offset:BReset Value:DAccess:BSize:DBIOS Optimal DefaultD		0/6 B2- 100 RW 16 fault Oh	0/6/0/PCI B2-B3h 1001h RW1C, RO-V, RO 16 bits 0h	
Bit	Access	Reset Value	RST/ PWR	Description
10	RO	0h		Reserved (RSVD)
9:4	RO-V	00h	Uncore	Negotiated Link Width (NLW) This field indicates negotiated link width. This field is valid only when the link is in the L0, L0s, or L1 states (after link width negotiation is successfully completed). 00h = Reserved 01h = X1 02h = X2 04h = X4 08h = X8 10h = X16 All other encodings are reserved.
3:0	RO	Oh	Uncore	Current Link Speed (CLS) This field indicates the negotiated Link speed of the given PCI Express Link. The encoding is the binary value of the bit location in the Supported Link Speeds Vector (in the Link Capabilities 2 register) that corresponds to the current Link speed. For example, a value of 0010b in this field indicates that the current Link speed is that corresponding to bit 2 in the Supported Link Speeds Vector, which is 5.0 GT/s. All other encodings are reserved. The value in this field is undefined when the Link is not up.

2.10.41 SLOTCAP—Slot Capabilities Register

Note:

PCI Express* Hot-Plug is not supported on the processor.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/6/0/PCI B4-B7h 00040000h RW-O, RO 32 bits		
Bit	Access	Reset Value	RST/ PWR	Description
31:19	RW-O	0000h	Uncore	Physical Slot Number (PSN) This field indicates the physical slot number attached to this Port. BIOS Requirement: This field must be initialized by BIOS to a value that assigns a slot number that is globally unique within the chassis.
18	RO	1b	Uncore	No Command Completed Support (NCCS) When set to 1b, this bit indicates that this slot does not generate software notification when an issued command is completed by the Hot-Plug Controller. This bit is only permitted to be set to 1b if the hot-plug capable port is able to accept writes to all fields of the Slot Control register without delay between successive writes.
17	RO	0b	Uncore	Reserved for Electromechanical Interlock Present (EIP) When set to 1b, this bit indicates that an Electromechanical Interlock is implemented on the chassis for this slot.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/6/0/PCI B4-B7h 00040000h RW-0, RO 32 bits		
Bit	Access	Reset Value	RST/ PWR	Description
16:15	RW-O	00b	Uncore	Slot Power Limit Scale (SPLS) This field specifies the scale used for the Slot Power Limit Value. 00 = 1.0x 01 = 0.1x 10 = 0.01x 11 = 0.001x If this field is written, the link sends a Set_Slot_Power_Limit message.
14:7	RW-O	00h	Uncore	Slot Power Limit Value (SPLV) In combination with the Slot Power Limit Scale value, specifies the upper limit on power supplied by slot. Power limit (in Watts) is calculated by multiplying the value in this field by the value in the Slot Power Limit Scale field. If this field is written, the link sends a Set_Slot_Power_Limit message.
6	RO	0b	Uncore	Reserved for Hot-plug Capable (HPC) When set to 1b, this bit indicates that this slot is capable of supporting hot-plug operations.
5	RO	0b	Uncore	Reserved for Hot-plug Surprise (HPS) When set to 1b, this bit indicates that an adapter present in this slot might be removed from the system without any prior notification. This is a form factor specific capability. This bit is an indication to the operating system to allow for such removal without impacting continued software operation.
4	RO	0b	Uncore	Reserved for Power Indicator Present (PIP) When set to 1b, this bit indicates that a Power Indicator is electrically controlled by the chassis for this slot.
3	RO	0b	Uncore	Reserved for Attention Indicator Present (AIP) When set to 1b, this bit indicates that an Attention Indicator is electrically controlled by the chassis.
2	RO	0b	Uncore	Reserved for MRL Sensor Present (MSP) When set to 1b, this bit indicates that an MRL Sensor is implemented on the chassis for this slot.
1	RO	0b	Uncore	Reserved for Power Controller Present (PCP) When set to 1b, this bit indicates that a software programmable Power Controller is implemented for this slot/adapter (depending on form factor. (
0	RO	0b	Uncore	Reserved for Attention Button Present (ABP) When set to 1b, this bit indicates that an Attention Button for this slot is electrically controlled by the chassis.

2.10.42 SLOTCTL—Slot Control Register

Note:

PCI Express* Hot-Plug is not supported on the processor.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/ B8 00 RC 16 fault Oh	6/0/PCI -B9h 00h bits	
Bit	Access	Reset Value	RST/ PWR	Description
15:13	RO	0h		Reserved (RSVD)
12	RO	Ob	Uncore	Reserved for Data Link Layer State Changed Enable (DLLSCE) If the Data Link Layer Link Active capability is implemented, when set to 1b, this field enables software notification when Data Link Layer Link Active field is changed. If the Data Link Layer Link Active capability is not implemented, this bit is permitted to be read-only with a value of 0b.
11	RO	0b	Uncore	Reserved for Electromechanical Interlock Control (EIC) If an Electromechanical Interlock is implemented, a write of 1b to this field causes the state of the interlock to toggle. A write of 0b to this field has no effect. A read to this register always returns a 0.
10	RO	Ob	Uncore	Reserved for Power Controller Control (PCC) If a Power Controller is implemented, this field when written sets the power state of the slot per the defined encodings. Reads of this field must reflect the value from the latest write, even if the corresponding hot-plug command is not complete, unless software issues a write without waiting for the previous command to complete in which case the read value is undefined. Depending on the form factor, the power is turned on/off either to the slot or within the adapter. Note that in some cases the power controller may autonomously remove slot power or not respond to a power-up request based on a detected fault condition, independent of the Power Controller Control setting. The defined encodings are: 0 = Power On 1 = Power Off If the Power Controller Implemented field in the Slot Capabilities register is set to 0b, then writes to this field have no effect and the read value of this field is undefined.
9:8	RO	00b	Uncore	Reserved Power Indicator Control (PIC) If a Power Indicator is implemented, writes to this field set the Power Indicator to the written state. Reads of this field must reflect the value from the latest write, even if the corresponding hot-plug command is not complete, unless software issues a write without waiting for the previous command to complete in which case the read value is undefined. 00 = Reserved 01 = On 10 = Blink 11 = Off If the Power Indicator Present bit in the Slot Capabilities register is 0b, this field is permitted to be read-only with a value of 00b.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/0 B8 000 R0 16 fault 0h	6/0/PCI -B9h 00h bits	
Bit	Access	Reset Value	RST/ PWR	Description
7:6	RO	00b	Uncore	Reserved for Attention Indicator Control (AIC) If an Attention Indicator is implemented, writes to this field set the Attention Indicator to the written state. Reads of this field must reflect the value from the latest write, even if the corresponding hot-plug command is not complete, unless software issues a write without waiting for the previous command to complete in which case the read value is undefined. If the indicator is electrically controlled by chassis, the indicator is controlled directly by the downstream port through implementation specific mechanisms. 00 = Reserved 01 = On 10 = Blink 11 = Off If the Attention Indicator Present bit in the Slot Capabilities register is 0b, this field is permitted to be read only with a value of 00b.
5	RO	0b	Uncore	Reserved for Hot-plug Interrupt Enable (HPIE) When set to 1b, this bit enables generation of an interrupt on enabled hot-plug events. Reset Value of this field is 0b. If the Hot-plug Capable field in the Slot Capabilities register is set to 0b, this bit is permitted to be read-only with a value of 0b.
4	RO	Оb	Uncore	Reserved for Command Completed Interrupt Enable (CCI) If Command Completed notification is supported (as indicated by No Command Completed Support field of Slot Capabilities Register), when set to 1b, this bit enables software notification when a hot-plug command is completed by the Hot-Plug Controller. Reset Value of this field is 0b. If Command Completed notification is not supported, this bit must be hardwired to 0b.
3	RO	0b	Uncore	Presence Detect Changed Enable (PDCE) When set to 1b, this bit enables software notification on a presence detect changed event.
2	RO	Ob	Uncore	Reserved for MRL Sensor Changed Enable (MSCE) When set to 1b, this bit enables software notification on a MRL sensor changed event. Reset Value of this field is 0b. If the MRL Sensor Present field in the Slot Capabilities register is set to 0b, this bit is permitted to be read-only with a value of 0b.
1	RO	Ob	Uncore	Reserved for Power Fault Detected Enable (PFDE) When set to 1b, this bit enables software notification on a power fault event. Reset Value of this field is 0b. If Power Fault detection is not supported, this bit is permitted to be read-only with a value of 0b.
0	RO	0b	Uncore	Reserved for Attention Button Pressed Enable (ABPE) When set to 1b, this bit enables software notification on an attention button pressed event.

2.10.43 SLOTSTS—Slot Status Register

This is a PCI Express* Slot related register.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/6 BA- 000 RO, 16 fault 00f	5/0/PCI -BBh Joh , RO-V, RW bits 1	1C
Bit	Access	ccess Reset RST/ Value PWR		Description
15:9	RO	0h		Reserved (RSVD)
8	RO	0b	Uncore	Reserved for Data Link Layer State Changed (DLLSC) This bit is set when the value reported in the Data Link Layer Link Active field of the Link Status register is changed. In response to a Data Link Layer State Changed event, software must read the Data Link Layer Link Active field of the Link Status register to determine if the link is active before initiating configuration cycles to the hot plugged device.
7	RO	0b	Uncore	Reserved for Electromechanical Interlock Status (EIS) If an Electromechanical Interlock is implemented, this bit indicates the current status of the Electromechanical Interlock. 0 = Electromechanical Interlock Disengaged 1 = Electromechanical Interlock Engaged
6	RO-V	Оb	Uncore	 Presence Detect State (PDS) In band presence detect state: 0 = Slot Empty 1 = Card present in slot This bit indicates the presence of an adapter in the slot, reflected by the logical "OR" of the Physical Layer in-band presence detect mechanism and, if present, any out-of-band presence detect mechanism defined for the slot's corresponding form factor. The in-band presence detect mechanism requires that power be applied to an adapter for its presence to be detected. Consequently, form factors that require a power controller for hot-plug must implement a physical pin presence detect mechanism. 0 = Slot Empty 1 = Card Present in slot This register must be implemented on all Downstream Ports that implement slots. For Downstream Ports not connected to slots (where the Slot Implemented bit of the PCI Express Capabilities Register is 0b), this bit must return 1b. Note: PCI Express* Hot-Plug is not supported on the processor.
5	RO	0b	Uncore	Reserved for MRL Sensor State (MSS)This register reports the status of the MRL sensor if it is implemented.0 = MRL Closed1 = MRL Open

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/6 BA 000 RO 16 fault 001	5/0/PCI -BBh D0h , RO-V, RW bits 1	1C
Bit	Access	Reset Value	RST/ PWR	Description
4	RO	ОЬ	Uncore	Reserved for Command Completed (CC) If Command Completed notification is supported (as indicated by No Command Completed Support field of Slot Capabilities Register), this bit is set when a hot-plug command has completed and the Hot-Plug Controller is ready to accept a subsequent command. The Command Completed status bit is set as an indication to host software that the Hot-Plug Controller has processed the previous command and is ready to receive the next command; it provides no assurance that the action corresponding to the command is complete. If Command Completed notification is not supported, this bit must be hardwired to 0b. Note: PCI Express* Hot-Plug is not supported on the processor.
3	RW1C	0b	Uncore	Presence Detect Changed (PDC) A pulse indication that the inband presence detect state has changed This bit is set when the value reported in Presence Detect State is changed.
2	RO	0b	Uncore	Reserved for MRL Sensor Changed (MSC) If an MRL sensor is implemented, this bit is set when a MRL Sensor state change is detected. If an MRL sensor is not implemented, this bit must not be set.
1	RO	Ob	Uncore	Reserved for Power Fault Detected (PFD) If a Power Controller that supports power fault detection is implemented, this bit is set when the Power Controller detects a power fault at this slot. Note that, depending on hardware capability, it is possible that a power fault can be detected at any time, independent of the Power Controller Control setting or the occupancy of the slot. If power fault detection is not supported, this bit must not be set.
0	RO	0b	Uncore	Reserved for Attention Button Pressed (ABP) If an Attention Button is implemented, this bit is set when the attention button is pressed. If an Attention Button is not supported, this bit must not be set.

2.10.44 RCTL-Root Control Register

This register allows control of PCI Express* Root Complex specific parameters. The system error control bits in this register determine if corresponding SERRs are generated when our device detects an error (reported in this device's Device Status register) or when an error message is received across the link. Reporting of SERR as controlled by these bits takes precedence over the SERR Enable in the PCI Command Register.

B/D/F/Type:0/6/0/Address Offset:BC-BDIReset Value:0000hAccess:RW, ROSize:16 bitsBIOS Optimal Default000h		5/0/PCI -BDh 00h 7, RO bits 0h		
Bit	Access	Reset Value	RST/ PWR	Description
15:3	RO	0h		Reserved (RSVD)
2	RW	0b	Uncore	System Error on Fatal Error Enable (SEFEE) This bit controls the Root Complex's response to fatal errors. 0 = No SERR generated on receipt of fatal error. 1 = SERR should be generated if a fatal error is reported by any of the devices in the hierarchy associated with this Root Port, or by the Root Port itself.
1:0	RO	0h		Reserved (RSVD)

2.10.45 LCAP2-Link Capabilities 2 Register

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Defa		0/6/0/PCI CC-CFh 00000006h RO-V 32 bits fault 000000h		
Bit	Access	Reset Value	RST/ PWR	Description
31:8	RO	0h		Reserved (RSVD)
7:1	RO-V	03h	Uncore	Supported Link Speeds Vector (SLSV): This field indicates the supported Link speed(s) of the associated Port. For each bit, a value of 1b indicates that the corresponding Link speed is supported; otherwise, the Link speed is not supported. Bit definitions are: Bit 1 = 2.5 GT/s Bit 2 = 5.0 GT/s Bits 2 = 5.0 GT/s Bits 7:4 = Reserved Multi-Function devices associated with an Upstream Port must report the same value in this field for all Functions. DMI does not support this control register since it is Gen3 register.
0	RO	0h		Reserved (RSVD)

2.11 PCI Device 6 Extended Configuration Registers

Table 2-14. PCI Device 6 Extended Configuration Register Address Map

Address Offset	Symbol	Register Name	Reset Value	Access
0-103h	RSVD	Reserved	0h	RO
104-107h	PVCCAP1	Port VC Capability Register 1	0000000h	RO
108–10Bh	PVCCAP2	Port VC Capability Register 2	00000000h	RO
10C-10Dh	PVCCTL	Port VC Control	0000h	RW, RO
10E-10Fh	RSVD	Reserved	0h	RO
110-113h	VCORCAP	VC0 Resource Capability	00000001h	RO
114-117h	VCORCTL	VC0 Resource Control	800000FFh	RO, RW
118-119h	RSVD	Reserved	0h	RO
11A-11Bh	VCORSTS	VC0 Resource Status	0002h	RO-V
11C-13Fh	RSVD	Reserved	0h	RO
140-143h	RCLDECH	Root Complex Link Declaration Enhanced	00010005h	RO-V, RO
144-147h	ESD	Element Self Description	05000100h	RO, RW-O
148-14Fh	RSVD	Reserved	0h	RO
150-153h	LE1D	Link Entry 1 Description	00000000h	RO, RW-O
154-157h	RSVD	Reserved	0h	RO
158–15Bh	LE1A	Link Entry 1 Address	00000000h	RW-O
15C-15Fh	LE1AH	Link Entry 1 Address	00000000h	RW-O
160-23Fh	RSVD	Reserved	0h	RO
240-243h	APICBASE	APIC Base address	00000000h	RW
244-247h	APICLIMIT	APIC Base address Limit	00000000h	RW,
248-C33h	RSVD	Reserved	—	_
C34-C37h	CMNRXERR	Common Rx Error Register	00000000h	RW1CS
C38-D0Bh	RSVD	Reserved	0h	RO
D0C-D0Fh	PEGTST	PCI Express Test Modes	00000000h	RO-FW, RW
D10-D33h	RSVD	Reserved	0h	RO
D34-D37h	PEGUPDNCFG	PEG UPconfig/DNconfig Control	0000001Fh	RW, RW1CS
D38-D6Bh	RSVD	Reserved	0h	RO
D6C-D6Fh	BGFCTL3	BGF Control 3	400204E0h	RW
D70-DBFh	RSVD	Reserved	0h	RO
DC0-DC3h	EQPRESET1_2	Equalization Preset 1/2 Register	3400FBC0h	RW
DC4-DC7h	EQPRESET2_3_4	Equalization Preset 2/3/4 Register	0037100Ah	RW
DC8-DCBh	RSVD	Reserved	0h	RO
DCC-DCFh	EQPRESET6_7	Equalization Preset 6/7 Register	36200E06h	RW
DD0-DD7h	RSVD	Reserved	0h	RO
DD8-DDBh	EQCFG	Equalization Configuration Register	00000000h	RW

2.11.1 PVCCAP1—Port VC Capability Register 1

This register describes the configuration of PCI $\ensuremath{\mathsf{Express}}^*$ Virtual Channels associated with this port.

B/D/F/Type:0/6Address Offset:104Reset Value:000Access:ROSize:32BIOS Optimal Default000		6/0/MMR 1–107h 000000h bits 00000h		
Bit	Access	Reset Value	RST/ PWR	Description
31:7	RO	0h		Reserved (RSVD)
6:4	RO	000b	Uncore	Low Priority Extended VC Count (LPEVCC) Indicates the number of (extended) Virtual Channels in addition to the default VC belonging to the low-priority VC (LPVC) group that has the lowest priority with respect to other VC resources in a strict-priority VC Arbitration. The value of 0 in this field implies strict VC arbitration.
3	RO	0h		Reserved (RSVD)
2:0	RO	000b	Uncore	Extended VC Count (EVCC) Indicates the number of (extended) Virtual Channels in addition to the default VC supported by the device.

2.11.2 PVCCAP2—Port VC Capability Register 2

This register describes the configuration of PCI Express* Virtual Channels associated with this port.

B/D/F/Type:0/6/0/MMFAddress Offset:108-10BhReset Value:0000000hAccess:ROSize:32 bitsBIOS Optimal Default0000h			5/0/MMR 3–10Bh 000000h bits 00h	
Bit	Access	Reset Value	RST/ PWR	Description
31:24	RO	00h	Uncore	VC Arbitration Table Offset (VCATO): Indicates the location of the VC Arbitration Table. This field contains the zero-based offset of the table in DQWORDS (16 bytes) from the base address of the Virtual Channel Capability Structure. A value of 0 indicates that the table is not present (due to fixed VC priority).
23:8	RO	0h		Reserved (RSVD)
7:0	RO	00h	Uncore	Reserved for VC Arbitration Capability (VCAC):

2.11.3 PVCCTL—Port VC Control Register

B/D/F/Type:0/6/0/MMRAddress Offset:10C-10DhReset Value:0000hAccess:RW, ROSize:16 bitsBIOS Optimal Default000h			5/0/MMR C-10Dh Ooh , RO bits Dh	
Bit	Access	Reset Value	RST/ PWR	Description
15:4	RO	0h		Reserved (RSVD)
3:1	RW	000b	Uncore	VC Arbitration Select (VCAS) This field will be programmed by software to the only possible value as indicated in the VC Arbitration Capability field. Since there is no other VC supported than the default, this field is reserved.
0	RO	0b	Uncore	Reserved for Load VC Arbitration Table (VCARB) Used for software to update the VC Arbitration Table when VC arbitration uses the VC Arbitration Table. As a VC Arbitration Table is never used by this component this field will never be used.

2.11.4 VCORCAP-VCO Resource Capability Register

B/D/F/Type:0/6Address Offset:110Reset Value:000Access:ROSize:32BIOS Optimal Default001		5/0/MMR)-113h)00001h bits 1		
Bit	Access	Reset Value	RST/ PWR	Description
31:24	RO	00h	Uncore	Reserved for Port Arbitration Table Offset (PATO)
23	RO	0h		Reserved (RSVD)
22:16	RO	00h	Uncore	Reserved for Maximum Time Slots (MTS)
15	RO	0b	Uncore	 Reject Snoop Transactions (RSNPT) 0 = Transactions with or without the No Snoop bit set within the TLP header are allowed on this VC. 1 = When set, any transaction for which the No Snoop attribute is applicable but is not set within the TLP Header will be rejected as an Unsupported Request
14:8	RO	0h		Reserved (RSVD)

B/D/F/Type:0/6/0/MAddress Offset:110-113Reset Value:0000000Access:ROSize:32 bitsBIOS Optimal Default00h			5/0/MMR 0-113h 000001h bits 1	
Bit	Access	Reset Value	RST/ PWR	Description
				Port Arbitration Capability (PAC)
7:0	RO	01h	Uncore	Indicates types of Port Arbitration supported by the VC resource. This field is valid for all Switch Ports, Root Ports that support peer-to-peer traffic, and RCRBs, but not for PCI Express Endpoint devices or Root Ports that do not support peer to peer traffic. Each bit location within this field corresponds to a Port Arbitration Capability defined below. When more than one bit in this field is set, it indicates that the VC resource can be configured to provide different arbitration services. Software selects among these capabilities by writing to the Port Arbitration Select field (see below). Defined bit positions are: Bit 0 Non-configurable hardware-fixed arbitration scheme, such as Round Robin (RR) Bit 1 Weighted Round Robin (WRR) arbitration with 32 phases Bit 2 WRR arbitration with 64 phases Bit 3 WRR arbitration with 128 phases Bit 4 Time-based WRR with 128 phases Bit 5 WRR arbitration with 256 phases Bits 6-7 Reserved Processor only supported arbitration indicates "Non-configurable hardware-fixed arbitration scheme".

2.11.5 VC0RCTL-VC0 Resource Control Register

This register controls the resources associated with PCI Express* Virtual Channel 0.

B/D/F/ Address Reset V Access: Size: BIOS O	Type: 5 Offset: alue: ptimal De	0/0 114 800 RO 32 fault 000	5/0/MMR 4–117h D000FFh , RW bits Dh	
Bit	Access	Reset Value	RST/ PWR	Description
31	RO	1b	Uncore	VC0 Enable (VC0E) For VC0 this is hardwired to 1 and read only as VC0 can never be disabled.
30:27	RO	0h		Reserved (RSVD)
26:24	RO	000b	Uncore	VC0 ID (VC0ID): Assigns a VC ID to the VC resource. For VC0 this is hardwired to 0 and read only.
23:20	RO	0h		Reserved (RSVD)
19:17	RW	000Ь	Uncore	Port Arbitration Select (PAS) Port Arbitration Select – This field configures the VC resource to provide a particular Port Arbitration service. This field is valid for RCRBs, Root Ports that support peer to peer traffic, and Switch Ports, but not for PCI Express Endpoint devices or Root Ports that do not support peer to peer traffic. The permissible value of this field is a number corresponding to one of the asserted bits in the Port Arbitration Capability field of the VC resource. This field does not affect the root port behavior.
16	RO	0h		Reserved (RSVD)
15:8	RW	00h	Uncore	TC High VCO Map (TCHVCOM): Allow usage of high order TCs. BIOS should keep this field zeroed to allow usage of the reserved TC[3] for other purposes
7:1	RW	7Fh	Uncore	TC/VC0 Map (TCVC0M) Indicates the TCs (Traffic Classes) that are mapped to the VC resource. Bit locations within this field correspond to TC values. For example, when bit 7 is set in this field, TC7 is mapped to this VC resource. When more than one bit in this field is set, it indicates that multiple TCs are mapped to the VC resource. In order to remove one or more TCs from the TC/VC Map of an enabled VC, software must ensure that no new or outstanding transactions with the TC labels are targeted at the given Link.
0	RO	1b	Uncore	TCO/VCO Map (TCOVCOM) Traffic Class 0 is always routed to VC0.

2.11.6 VCORSTS-VCO Resource Status Register

B/D/F/Type:0/6,Address Offset:11AReset Value:000Access:RO-1Size:16 bBIOS Optimal Default000		;/O/MMR \-11Bh)2h -V bits)0h		
Bit	Access	Reset Value	RST/ PWR	Description
15:2	RO	0h		Reserved (RSVD)
1	RO-V	1b	Uncore	 VCO Negotiation Pending (VCONP) 0 = The VC negotiation is complete. 1 = The VC resource is still in the process of negotiation (initialization or disabling). This bit indicates the status of the process of Flow Control initialization. It is set by default on Reset, as well as whenever the corresponding Virtual Channel is Disabled or the Link is in the DL_Down state. It is cleared when the link successfully exits the FC_INIT2 state. Before using a Virtual Channel, software must check whether the VC Negotiation Pending fields for that Virtual Channel are cleared in both Components on a Link.
0	RO	0h		Reserved (RSVD)

This register reports the Virtual Channel specific status.

2.11.7 RCLDECH—Root Complex Link Declaration Enhanced

This capability declares links from this element (PEG) to other elements of the root complex component to which it belongs. See PCI Express* specification for link/topology declaration requirements.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/6/0/MMR 140–143h 00010005h RO-V, RO 32 bits		
Bit	Access	Reset Value	RST/ PWR	Description
31:20	RO	0h		Reserved (RSVD)
19:16	RO	1h	Uncore	Link Declaration Capability Version (LDCV) Hardwired to 1 to indicate compliances with the 1.1 version of the PCI Express specification. Note: This version does not change for 2.0 compliance.
15:0	RO	0005h	Uncore	Extended Capability ID (ECID) Value of 0005 h identifies this linked list item (capability structure) as being for PCI Express Link Declaration Capability. See corresponding Egress Port Link Declaration Capability registers for diagram of Link Declaration Topology.

2.11.8 ESD—Element Self Description Register

This register provides information about the root complex element containing this Link Declaration Capability.

B/D/F/Type:0Address Offset:1.Reset Value:0Access:RSize:3BIOS Optimal Default0		0/6 144 050 RO 32 fault Oh	5/0/MMR 4–147h 000100h , RW-0 bits	
Bit	Access	Reset Value	RST/ PWR	Description
31:24	RO	05h	Uncore	Port Number (PN) Specifies the port number associated with this element with respect to the component that contains this element. Note the value is instantiation dependent: BDF 0.1.0> 02 BDF 0.1.1> 03 BDF 0.1.2> 04 BDF 0.6.0> 05
23:16	RW-O	00h	Uncore	Component ID (CID) Identifies the physical component that contains this Root Complex Element. BIOS Requirement: This field must be initialized according to guidelines in the PCI Express* Isochronous/Virtual Channel Support Hardware Programming Specification (HPS).
15:8	RO	01h	Uncore	Number of Link Entries (NLE) Indicates the number of link entries following the Element Self Description. This field reports 1 (to Egress port only).
7:4	RO	0h		Reserved (RSVD)
3:0	RO	0h	Uncore	Element Type (ET) Indicates Configuration Space Element.

2.11.9 LE1D—Link Entry 1 Description Register

This register provides the first part of a Link Entry that declares an internal link to another Root Complex Element.

B/D/F/Type:0/6/0/MMRAddress Offset:150-153hReset Value:0000000hAccess:RO, RW-OSize:32 bitsBIOS Optimal Default0000h			6/0/MMR 0-153h 000000h 0RW-0 bits 00h	
Bit	Access	Reset Value	RST/ PWR	Description
31:24	RO	00h	Uncore	Target Port Number (TPN) Specifies the port number associated with the element targeted by this link entry (Egress Port). The target port number is with respect to the component that contains this element as specified by the target component ID. 00h is the egress port (memory).
23:16	RW-O	00h	Uncore	Target Component ID (TCID) Identifies the physical or logical component that is targeted by this link entry. BIOS Requirement: This field must be initialized according to guidelines in the PCI Express* Isochronous/Virtual Channel Support Hardware Programming Specification (HPS).
15:2	RO	0h		Reserved (RSVD)
1	RO	0b	Uncore	Link Type (LTYP) Indicates that the link points to memory-mapped space (for RCRB). The link address specifies the 64-bit base address of the target RCRB.
0	RW-O	Ob	Uncore	Link Valid (LV) 0 = Link Entry is not valid and will be ignored. 1 = Link Entry specifies a valid link. BIOS should write "1' to this bit once it has programmed Link Entry 1 Address (LE1A) and while it writes the TCID in this register

2.11.10 LE1A—Link Entry 1 Address Register

This register provides the second part of a Link Entry that declares an internal link to another Root Complex Element.

B/D/F/Type:0/6/0/MMRAddress Offset:158–15BhReset Value:0000000hAccess:RW-OSize:32 bitsBIOS Optimal Default000h			6/0/MMR 8–15Bh 900000h -O bits 9h	
Bit	Access	Reset Value	RST/ PWR	Description
31:12	RW-O	00000h	Uncore	Link Address (LA) Memory mapped base address of the RCRB that is the target element (Egress Port) for this link entry. BIOS Requirement: This field is inserted by BIOS such that it matches PXPEPBAR.
11:0	RO	0h		Reserved (RSVD)

2.11.11 LE1AH—Link Entry 1 Address Register

This register provides the second part of a Link Entry that declares an internal link to another Root Complex Element.

B/D/F/Type:0/6/0/MMRAddress Offset:15C-15FhReset Value:0000000hAccess:RW-0Size:32 bitsBIOS Optimal Default000000h			5/0/MMR C-15Fh 000000h -0 bits 0000h	
Bit	Access	Reset Value	RST/ PWR	Description
31:8	RO	0h		Reserved (RSVD)
7:0	RW-O	00h	Uncore	Link Address (LA) Memory mapped base address of the RCRB that is the target element (Egress Port) for this link entry. BIOS Requirement: This field is inserted by BIOS such that it matches PXPEPBAR.

2.11.12 APICBASE—APIC Base Address Register

B/D/F/Type:0/6/Address Offset:240Reset Value:0000Access:RWSize:32 bBIOS Optimal Default0000		6/0/MMR 0-243h 000000h bits 0000h		
Bit	Access	Reset Value	RST/ PWR	Description
31:12	RO	0h		Reserved (RSVD)
11:4	RW	00h	Uncore	APIC Base Address (APICBASE): Bits 19:12 of the APIC Base Bits 31:20 are assumed to be FECh. Bits 0:11 are don't care for address decode. Address decoding to the APIC range is done as: APIC_BASE [31:12] ≤ A[31:12] ≤ APIC_LIMIT[31:12]
3:1	RO	0h		Reserved (RSVD)
0	RW	Ob	Uncore	APIC Range Enable (APICRE): Enables the decode of the APIC window. 0 = Disable 1 = Enable

2.11.13 APICLIMIT—APIC Base Address Limit Register

B/D/F/Type:0/0Address Offset:244Reset Value:000Access:RWSize:32BIOS Optimal Default000			6/0/MMR 1-247h 000000h bits 0000h	
Bit	Access	Reset Value	RST/ PWR	Description
31:12	RO	0h		Reserved (RSVD)
11:4	RW	00h	Uncore	APIC Base Address (APICLIMIT): Bits 19:12 of the APIC Limit Bits 31:20 are assumed to be FECh. Bits 0:11 are don't care for address decode. Address decoding to the APIC range is done as: APIC_BASE [31:12] ≤ A[31:12] ≤ APIC_LIMIT[31:12]
3:0	RO	0h		Reserved (RSVD)

2.11.14 CMNRXERR—Common Rx Error Register

B/D/F/Type:OAddress Offset:OReset Value:OAccess:FSize:3BIOS Optimal DefaultO			6/0/MMR I-C37h 000000h 1CS bits 00000h	
Bit	Access	Reset Value	RST/ PWR	Description
31:3	RO	0h		Reserved (RSVD)
2	RW1CS	0b	Powergood	Gen1/2 UFD Framing Error Status (UFDFRAMEERR): Only applicable for Gen1/Gen2. When set, this field indicates that a framing error occurred in the Link. (that is, dropped STP, dropped SDP, dropped END)
1:0	RO	0h		Reserved (RSVD)

2.11.15 PEGTST-PCI Express* Test Modes Register

B/D/F/Type:0/Address Offset:DReset Value:00Access:RSize:32BIOS Optimal Default00			5/0/MMR C-D0Fh 000000h -FW, RW bits 00000h	
Bit	Access	Reset Value	RST/ PWR	Description
31:21	RO	0h		Reserved (RSVD)
20	RO-FW	ОЬ	Uncore	 PEG Lane Reversal Strap Status (LANEREVSTS) This register bit reflects the status of the PEG lane reversal strap. The PEGLaneReversal strap is mirrored in this register bit. 0 = PEG lane is not reversed. 1 = PEG lane is reversed. This bit is applicable only for Function 0 in Devices 1 and 6. Note: Lane reversal is done end-to-end regardless of bifurcation mode or not.
19:0	RO	0h		Reserved (RSVD)

2.11.16 PEGUPDNCFG—PEG UPconfig/DNconfig Control Register

This register allows software to dynamically limit the port width.

The sequence to change width is:

- 1. Write to this register the required width
- 2. Set Retrain link bit [5] in LCTL register
- 3. Wait till LSTS.LTRN [11] is clear

Note: Actual width may be lower due to card limitation.

B/D/F/Type:0/6/Address Offset:D34-Reset Value:0000Access:RW, ISize:32 biBIOS Optimal Default0000			5/0/MMR 4–D37h 00001Fh 7, RW1CS bits 00000h	
Bit	Access	Reset Value	RST/ PWR	Description
31:7	RO	0h		Reserved (RSVD)
6	RW	0b	Uncore	 Advertise Upconfig Capability (ADUPCFG) 0 = Do not advertise Upconfig support. 1 = Set the upconfig capable bit to 1 in our transmitted TS2s during Config.Complete.
5:0	RO	0h		Reserved (RSVD)

2.11.17 BGFCTL3—BGF Control 3 Register

B/D/F/Type:0/6/0/MMAddress Offset:D6C-D6FhReset Value:400204E0HAccess:RWSize:32 bitsBIOS Optimal Default0000h		6/0/MMR C-D6Fh 0204E0h bits 00h		
Bit	Access	Reset Value	RST/ PWR	Description
31	RW	Ob	Uncore	Fclock Bubble Enable (FBEN) This bit disable Bubble generator on Fclk side of BGF. 0 = Disabled 1 = Enabled.
30	RW	1b	Uncore	Lclock Bubble Enable (LBEN) This bit enable Bubble generator on Lclk side of BGF 0 = Disabled 1 = Enabled. Bubble generation is disabled on slow side
29:18	RO	0h		Reserved (RSVD)
17:13	RW	10000b	Uncore	Slow ratio for gen 3 (SRG3) This field defines the BGF slow ration for gen3
12:8	RW	00100b	Uncore	BGF Ratio delta for Gen 3 (RDG3) This register defines the BGF Ratio delta for Gen 3. Delta between the fast and slow clock multiplier
7:0	RO	0h		Reserved (RSVD)

2.11.18 EQPRESET1_2—Equalization Preset 1/2 Register

B/D/F/Type:0/6/Address Offset:DC0Reset Value:3400Access:RWSize:32 bBIOS Optimal Default0h		5/0/MMR 0–DC3h 00FBC0h bits		
Bit	Access	Reset Value	RST/ PWR	Description
31:30	RO	0h		Reserved (RSVD)
29:24	RW	34h	Uncore	Preset 2 Cursor Coefficient (CURSOR2) Cursor coefficient for Preset 2.
23:18	RW	00h	Uncore	Preset 2 Precursor Coefficient (PRECUR2) Precursor coefficient for Preset 2.
17:6	RO	0h		Reserved (RSVD)
5:0	RW	00h	Uncore	Preset 1 Precursor Coefficient (PRECUR1) Precursor coefficient for Preset 1.

This register contains coefficients for Preset 1 and 2.

2.11.19 EQPRESET2_3_4—Equalization Preset 2/3/4 Register

B/D/F/Type:0/6/0Address Offset:DC4Reset Value:0037:Access:RWSize:32 bitBIOS Optimal Default0h			5/0/MMR 4–DC7h 37100Ah bits	
Bit	Access	Reset Value	RST/ PWR	Description
31:12	RO	0h		Reserved (RSVD)
11:6	RW	00h	Uncore	Preset 3 Precursor Coefficient (PRECUR3) Precursor coefficient for Preset 3.
5:0	RW	0Ah	Uncore	Preset 2 Postcursor Coefficient (POSTCUR2) Postcursor coefficient for Preset 2.

This register contains coefficients for Presets 2, 3, 4.

2.11.20 EQPRESET6_7—Equalization Preset 6/7 Register

B/D/F/Type: Address Offset: Reset Value: 0/6/0/MMR DCC-DCFh 36200E06h RW Access: Size: 32 bits **BIOS Optimal Default** Oh Reset RST/ Bit Access Description Value PWŔ 31:6 RO 0h Reserved (RSVD) Preset 6 Precursor Coefficient (PRECUR6): 5:0 RW 06h Uncore Precursor coefficient for Preset 6.

This register contains coefficients for Preset 6 and 7.

2.11.21 EQCFG—Equalization Configuration Register

B/D/F/Type:0/6/0/NAddress Offset:DD8-DDReset Value:0000000Access:RWSize:32 bitsBIOS Optimal Default0000000		5/0/MMR 8-DDBh 000000h bits 000000h		
Bit	Access	Reset Value	RST/ PWR	Description
31:2	RO	0h		Reserved (RSVD)
1	RW	0	Uncore	Disable Margining (MARGINDIS) When set, it will disable Tx margining during Polling.Compliance and Recovery.
0	RO	0		Reserved (RSVD)

2.12 Direct Media Interface Base Address Registers (DMIBAR)

Address Offset	Register Symbol	Register Name	Reset Value	Access
0-3h	DMIVCECH	DMI Virtual Channel Enhanced Capability	04010002h	RO
4-7h	DMIPVCCAP1	DMI Port VC Capability Register 1	00000000h	RO, RW-O
8-Bh	DMIPVCCAP2	DMI Port VC Capability Register 2	00000000h	RO
C-Dh	DMIPVCCTL	DMI Port VC Control	0000h	RW, RO
E-Fh	RSVD	Reserved	0h	RO
10-13h	DMIVCORCAP	DMI VC0 Resource Capability	00000001h	RO
14-17h	DMIVCORCTL	DMI VC0 Resour ce Control	8000007Fh	RO, RW
18-19h	RSVD	Reserved	0h	RO
1A-1Bh	DMIVCORSTS	DMI VC0 Resource Status	0002h	RO-V
1C-1Fh	DMIVC1RCAP	DMI VC1 Resource Capability	00008001h	RO
20-23h	DMIVC1RCTL	DMI VC1 Resource Control	01000000h	RO, RW
24-25h	RSVD	Reserved	0h	RO
26-27h	DMIVC1RSTS	DMI VC1 Resource Status	0002h	RO-V
28-2Bh	DMIVCPRCAP	DMI VCp Resource Capability	00000001h	RO
2C-2Fh	DMIVCPRCTL	DMI VCp Resource Control	02000000h	RO, RW
30-31h	RSVD	Reserved	0h	RO
32-33h	DMIVCPRSTS	DMI VCp Resource Status	0002h	RO-V
34-37h	DMIVCMRCAP	DMI VCm Resource Capability	00008000h	RO
38-3Bh	DMIVCMRCTL	DMI VCm Resource Control	07000080h	RW, RO
3C-3Dh	RSVD	Reserved	0h	RO
3E-3Fh	DMIVCMRSTS	DMI VCm Resource Status	0002h	RO-V
40-43h	DMIRCLDECH	DMI Root Complex Link Declaration	08010005h	RO
44-47h	DMIESD	DMI Element Self Description	01000202h	RO, RW-O
48-4Fh	RSVD	Reserved	0h	RO
50-53h	DMILE1D	DMI Link Entry 1 Description	00000000h	RW-O, RO
54-57h	RSVD	Reserved	0h	RO
58-5Bh	DMILE1A	DMI Link Entry 1 Address	00000000h	RW-O
5C-5Fh	DMILUE1A	DMI Link Upper Entry 1 Address	00000000h	RW-O
60-63h	DMILE2D	DMI Link Entry 2 Description	00000000h	RO, RW-O
64-67h	RSVD	Reserved	0h	RO
68-6Bh	DMILE2A	DMI Link Entry 2 Address	00000000h	RW-O
6C-6Fh	RSVD	Reserved	00000000h	RW-O
70-7Fh	RSVD	Reserved	0h	RO
80-83h	RSVD	Reserved	00010006h	RO
84-87h	LCAP	Link Capabilities	0001AC41h	RW-O, RO, RW-OV
88-89h	LCTL	Link Control	0000h	RW, RW-V

Table 2-15. DMIBAR Register Address Map (Sheet 1 of 2)

Address Offset	Register Symbol	Register Name	Reset Value	Access
8A-8Bh	LSTS	DMI Link Status	0001h	RO-V
8C-97h	RSVD	Reserved	0h	RO
98-99h	LCTL2	Link Control 2	0002h	RWS, RWS-V
9A-9Bh	LSTS2	Link Status 2	0000h	RO-V
9C-D33h	RSVD	Reserved	0h	RO
D34-D37h	RSVD	Reserved	0000005Fh	RW, RW1CS

Table 2-15. DMIBAR Register Address Map (Sheet 2 of 2)

2.12.1 DMIVCECH—DMI Virtual Channel Enhanced Capability Register

This register indicates DMI Virtual Channel capabilities.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/0/0/DMIBA 0-3h 04010002h RO 32 bits		NR
Bit	Access	Reset Value	RST/ PWR	Description
31:20	RO	040h	Uncore	Pointer to Next Capability (PNC) This field contains the offset to the next PCI Express capability structure in the linked list of capabilities (Link Declaration Capability).
19:16	RO	1h	Uncore	PCI Express Virtual Channel Capability Version (PCIEVCCV) Hardwired to 1 to indicate compliances with the 1.1 version of the PCI Express specification. Note: This version does not change for 2.0 compliance.
15:0	RO	0002h	Uncore	Extended Capability ID (ECID) Value of 0002h identifies this linked list item (capability structure) as being for PCI Express Virtual Channel registers.

2.12.2 DMIPVCCAP1—DMI Port VC Capability Register 1

This register describes the configuration of PCI $\ensuremath{\mathsf{Express}}\xspace^*$ Virtual Channels associated with this port.

B/D/F/Type:0/0Address Offset:4-2Reset Value:000Access:ROSize:32BIOS Optimal Default000		0/0 4-7 000 RO, 32 fault 000)/0/DMIBA 7h 000000h , RW-0 bits 00000h	R
Bit	Access	Reset Value	RST/ PWR	Description
31:7	RO	0h		Reserved (RSVD)
6:4	RO	000b	Uncore	Low Priority Extended VC Count (LPEVCC) This field indicates the number of (extended) Virtual Channels in addition to the default VC belonging to the low-priority VC (LPVC) group that has the lowest priority with respect to other VC resources in a strict-priority VC Arbitration. The value of 0 in this field implies strict VC arbitration.
3	RO	0h		Reserved (RSVD)
2:0	RW-O	000b	Uncore	Extended VC Count (EVCC) This field indicates the number of (extended) Virtual Channels in addition to the default VC supported by the device.

2.12.3 DMIPVCCAP2—DMI Port VC Capability Register 2

This register describes the configuration of PCI Express* Virtual Channels associated with this port.

B/D/F/Type:0/0/0/DiAddress Offset:8-BhReset Value:00000000Access:ROSize:32 bitsBIOS Optimal Default0000h)/0/DMIB# 3h)000000h bits)0h	AR
Bit	Access	Reset Value	RST/ PWR	Description
31:24	RO	00h	Uncore	Reserved for VC Arbitration Table Offset (VCATO)
23:8	RO	0h		Reserved (RSVD)
7:0	RO	00h	Uncore	Reserved for VC Arbitration Capability (VCAC)

2.12.4 DMIPVCCTL-DMI Port VC Control Register

B/D/F/Type:0/0Address Offset:C-LReset Value:000Access:RWSize:16BIOS Optimal Default000)/0/DMIBA Dh 00h , RO bits 0h	R	
Bit	Access	Reset Value	RST/ PWR	Description
15:4	RO	0h		Reserved (RSVD)
3:1	RW	000Ь	Uncore	VC Arbitration Select (VCAS) This field will be programmed by software to the only possible value as indicated in the VC Arbitration Capability field. The value 000b when written to this field will indicate the VC arbitration scheme is hardware fixed (in the root complex). This field cannot be modified when more than one VC in the LPVC group is enabled. 000 = Hardware fixed arbitration scheme, such as Round Robin Others = Reserved See the PCI express specification for more details.
0	RO	0b	Uncore	Reserved for Load VC Arbitration Table (LVCAT)

2.12.5 DMIVCORCAP-DMI VCO Resource Capability Register

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/0 10- 000 RO 32 fault 00f)/0/DMIB/ -13h)00001h bits 1	AR
Bit	Access	Reset Value	RST/ PWR	Description
31:24	RO	00h	Uncore	Reserved for Port Arbitration Table Offset (PATO)
23	RO	0h		Reserved (RSVD)
22:16	RO	00h	Uncore	Reserved for Maximum Time Slots (MTS)
15	RO	Оb	Uncore	 Reject Snoop Transactions (REJSNPT) 0 = Transactions with or without the No Snoop bit set within the TLP header are allowed on this VC. 1 = Any transaction for which the No Snoop attribute is applicable but is not set within the TLP Header will be rejected as an Unsupported Request.
14:8	RO	0h		Reserved (RSVD)
7:0	RO	01h	Uncore	Port Arbitration Capability (PAC) Having only bit 0 set indicates that the only supported arbitration scheme for this VC is non-configurable hardware-fixed.

2.12.6 DMIVCORCTL-DMI VC0 Resource Control Register

This register controls the resources associated with PCI Express* Virtual Channel 0.

B/D/F/Type:OAddress Offset:1Reset Value:8Access:8Size:3BIOS Optimal Default0		0/(14- 80(80 80 80 80 80 6	0/0/DMIB# -17h 00007Fh , RW bits 000h	AR
Bit	Access	Reset Value	RST/ PWR	Description
31	RO	1b	Uncore	Virtual Channel 0 Enable (VC0E) For VC0, this is hardwired to 1 and read only as VC0 can never be disabled.
30:27	RO	0h		Reserved (RSVD)
26:24	RO	000b	Uncore	Virtual Channel 0 ID (VC0ID) This field assigns a VC ID to the VC resource. For VC0, this is hardwired to 0 and read only.
23:20	RO	0h		Reserved (RSVD)
19:17	RW	000b	Uncore	Port Arbitration Select (PAS) This field configures the VC resource to provide a particular Port Arbitration service. A valid value for this field is a number corresponding to one of the asserted bits in the Port Arbitration Capability field of the VC resource. Because only bit 0 of that field is asserted. This field will always be programmed to '1'.
16:8	RO	0h		Reserved (RSVD)
7	RO	0b	Uncore	Traffic Class m / Virtual Channel 0 Map (TCMVC0M)
6:1	RW	3Fh	Uncore	Traffic Class / Virtual Channel 0 Map (TCVC0M) This field indicates the TCs (Traffic Classes) that are mapped to the VC resource. Bit locations within this field correspond to TC values. For example, when bit 7 is set in this field, TC7 is mapped to this VC resource. When more than one bit in this field is set, it indicates that multiple TCs are mapped to the VC resource. In order to remove one or more TCs from the TC/VC Map of an enabled VC, software must ensure that no new or outstanding transactions with the TC labels are targeted at the given Link.
0	RO	1b	Uncore	Traffic Class 0 / Virtual Channel 0 Map (TCOVCOM) Traffic Class 0 is always routed to VC0.

2.12.7 DMIVCORSTS—DMI VCO Resource Status Register

	B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Defa		0/0/0/DMIBA 1A-1Bh 0002h RO-V 16 bits fault 0000h		AR
	Bit	Access	Reset Value	RST/ PWR	Description
ſ	15:2	RO	0h		Reserved (RSVD)
	1	RO-V	1b	Uncore	 Virtual Channel 0 Negotiation Pending (VCONP) 0 = The VC negotiation is complete. 1 = The VC resource is still in the process of negotiation (initialization or disabling). This bit indicates the status of the process of Flow Control initialization. It is set by default on Reset, as well as whenever the corresponding Virtual Channel is Disabled or the Link is in the DL_Down state. It is cleared when the link successfully exits the FC_INIT2 state. BIOS Requirement: Before using a Virtual Channel, software must check whether the VC Negotiation Pending fields for that Virtual Channel are cleared in both Components on a Link.
ſ	0	RO	0h		Reserved (RSVD)

This register reports the Virtual Channel specific status.

2.12.8 DMIVC1RCAP-DMI VC1 Resource Capability Register

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/0/0/DMIBA 1C-1Fh 00008001h RO 32 bits ault 00h		NR
Bit	Access	Reset Value	RST/ PWR	Description
31:24	RO	00h	Uncore	Reserved for Port Arbitration Table Offset (PATO)
23	RO	0h		Reserved (RSVD)
22:16	RO	00h	Uncore	Reserved for Maximum Time Slots (MTS)
15	RO	1b	Uncore	 Reject Snoop Transactions (REJSNPT) 0 = Transactions with or without the No Snoop bit set within the TLP header are allowed on this VC. 1 = When set, any transaction for which the No Snoop attribute is applicable but is not set within the TLP Header will be rejected as an Unsupported Request.
14:8	RO	0h		Reserved (RSVD)
7:0	RO	01h	Uncore	Port Arbitration Capability (PAC) Having only bit 0 set indicates that the only supported arbitration scheme for this VC is non-configurable hardware-fixed.

2.12.9 DMIVC1RCTL-DMI VC1 Resource Control Register

This register controls the resources associated with PCI Express* Virtual Channel 1.

B/D/F/ Address Reset Va Access: Size: BIOS Op	Type: ; Offset: alue: ptimal De	0/0 20- 010 RO, 32 fault 000)/0/DMIBA -23h)000000h , RW bits 000h	NR
Bit	Access	Reset Value	RST/ PWR	Description
				Virtual Channel 1 Enable (VC1E)
				0 = Virtual Channel is disabled.
				1 = Virtual Channel is enabled. See exceptions below. Software must use the VC Negotiation Pending bit to check whether the VC negotiation is complete. When VC Negotiation Pending bit is cleared, a 1 read from this VC Enable bit indicates that the VC is enabled (Flow Control Initialization is completed for
				the PCI Express port). A 0 read from this bit indicates that the Virtual Channel is currently disabled.
31	RW	Ob	Uncore	 BIOS Requirement: To enable a Virtual Channel, the VC Enable bits for that Virtual Channel must be set in both Components on a Link. To disable a Virtual Channel, the VC Enable bits for that Virtual Channel must be cleared in both Components on a Link.
				 Software must ensure that no traffic is using a Virtual Channel at the time it is disabled. Software must fully disable a Virtual Channel in both Components on a Link before re-enabling the Virtual Channel.
30:27	RO	0h		Reserved (RSVD)
26:24	RW	001b	Uncore	Virtual Channel 1 ID (VC1ID) Assigns a VC ID to the VC resource. Assigned value must be non- zero. This field cannot be modified when the VC is already enabled.
23:20	RO	0h		Reserved (RSVD)
19:17	RW	000b	Uncore	Port Arbitration Select (PAS) Configures the VC resource to provide a particular Port Arbitration service. Valid value for this field is a number corresponding to one of the asserted bits in the Port Arbitration Capability field of the VC resource.
16:8	RO	0h		Reserved (RSVD)
7	RO	0b	Uncore	Traffic Class m / Virtual Channel 1 (TCMVC1M)
				Traffic Class / Virtual Channel 1 Map (TCVC1M) This indicates the TCs (Traffic Classes) that are mapped to the VC resource. Bit locations within this field correspond to TC values.
6:1	RW	00h	Uncore	For example, when bit 6 is set in this field, TC6 is mapped to this VC resource. When more than one bit in this field is set, it indicates that multiple TCs are mapped to the VC resource. In order to remove one or more TCs from the TC/VC Map of an enabled VC, software must ensure that no new or outstanding transactions with the TC labels are targeted at the given Link. BIOS Requirement: Program this field with the value 010001b, which maps TC1 and TC5 to VC1.
0	RO	0b	Uncore	Traffic Class 0 / Virtual Channel 1 Map (TC0VC1M) Traffic Class 0 is always routed to VC0.

2.12.10 DMIVC1RSTS-DMI VC1 Resource Status Register

B/D/F/ Address Reset V Access: Size: BIOS O	Type: 5 Offset: alue: ptimal Def	0/0/0/DMIBA 26-27h 0002h RO-V 16 bits fault 0000h		AR
Bit	Access	Reset Value	RST/ PWR	Description
15:2	RO	0h		Reserved (RSVD)
1	RO-V	1b	Uncore	 Virtual Channel 1 Negotiation Pending (VC1NP) 0 = The VC negotiation is complete. 1 = The VC resource is still in the process of negotiation (initialization or disabling). Software may use this bit when enabling or disabling the VC. This bit indicates the status of the process of Flow Control initialization. It is set by default on Reset, as well as whenever the corresponding Virtual Channel is Disabled or the Link is in the DL_Down state. It is cleared when the link successfully exits the FC_INIT2 state. Before using a Virtual Channel, software must check whether the VC Negotiation Pending fields for that Virtual Channel are cleared in both Components on a Link.
0	RO	0h		Reserved (RSVD)

This register reports the Virtual Channel specific status.

2.12.11 DMIVCPRCAP-DMI VCp Resource Capability Register

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Det		0/0/0/DMIBA 28-2Bh 00000001h RO 32 bits fault 00h		IR
Bit	Access	Reset Value	RST/ PWR	Description
31:24	RO	00h	Uncore	Reserved for Port Arbitration Table Offset (PATO)
23	RO	0h		Reserved (RSVD)
22:16	RO	00h	Uncore	Reserved for Maximum Time Slots (MTS)
15	RO	0b	Uncore	 Reject Snoop Transactions (REJSNPT) 0 = Transactions with or without the No Snoop bit set within the TLP header are allowed on this VC. 1 = Any transaction for which the No Snoop attribute is applicable but is not set within the TLP Header will be rejected as an Unsupported Request.
14:8	RO	0h		Reserved (RSVD)
7:0	RO	01h	Uncore	Reserved for Port Arbitration Capability (PAC)

2.12.12 DMIVCPRCTL-DMI VCp Resource Control Register

This register controls the resources associated with the DMI Private Channel (VCp).

B/D/F/ Address Reset V Access: Size: BIOS O	Type: 5 Offset: alue: ptimal De	0/0 2C- 020 RO 32 fault 000	0/0/DMIBA -2Fh 000000h , RW bits 000h	AR
Bit	Access	Reset Value	RST/ PWR	Description
31	RW	ОЬ	Uncore	 Virtual Channel private Enable (VCPE) 0 = Virtual Channel is disabled. 1 = Virtual Channel is enabled. See exceptions below. Software must use the VC Negotiation Pending bit to check whether the VC negotiation is complete. When VC Negotiation Pending bit is cleared, a 1 read from this VC Enable bit indicates that the VC is enabled (Flow Control Initialization is completed for the PCI Express port). A 0 read from this bit indicates that the Virtual Channel is currently disabled. BIOS Requirement: 1. To enable a Virtual Channel, the VC Enable bits for that Virtual Channel must be set in both Components on a Link. 2. To disable a Virtual Channel, the VC Enable bits for that Virtual Channel must be cleared in both Components on a Link. 3. Software must ensure that no traffic is using a Virtual Channel at the time it is disabled. 4. Software must fully disable a Virtual Channel in both Components on a Link before re-enabling the Virtual Channel.
30:27	RO	0h		Reserved (RSVD)
26:24	RW	010b	Uncore	Virtual Channel private ID (VCPID) This field assigns a VC ID to the VC resource. This field cannot be modified when the VC is already enabled.
23:8	RO	0h		Reserved (RSVD)
7	RO	0b	Uncore	Traffic Class m / Virtual Channel private Map (TCMVCPM)
6:1	RW	00h	Uncore	Traffic Class / Virtual Channel private Map (TCVCPM) It is recommended that private TC6 (0100000b) is the only value that should be programmed into this field for VCp traffic which will be translated by a virtualization engine, and TC2 (00000010b) is the only value that should be programmed into this field for VCp traffic which will not be translated by a virtualization engine. This strategy can simplify debug and limit validation permutations. BIOS Requirement: Program this field with the value 100010b, which maps TC2 and TC6 to VCp.
0	RO	0b	Uncore	Tc0 VCp Map (TC0VCPM)

2.12.13 DMIVCPRSTS-DMI VCp Resource Status Register

B/D/F/ Address Reset V Access: Size: BIOS O	Type: 5 Offset: alue: otimal Def	0/0/0/DMIBA 32-33h 0002h RO-V 16 bits fault 0000h		AR
Bit	Access	Reset Value	RST/ PWR	Description
15:2	RO	0h		Reserved (RSVD)
1	RO-V	1b	Uncore	 Virtual Channel private Negotiation Pending (VCPNP) 0 = The VC negotiation is complete. 1 = The VC resource is still in the process of negotiation (initialization or disabling). Software may use this bit when enabling or disabling the VC. This bit indicates the status of the process of Flow Control initialization. It is set by default on Reset, as well as whenever the corresponding Virtual Channel is Disabled or the Link is in the DL_Down state. It is cleared when the link successfully exits the FC_INIT2 state. Before using a Virtual Channel, software must check whether the VC Negotiation Pending fields for that Virtual Channel are cleared in both Components on a Link.
0	RO	0h		Reserved (RSVD)

This register reports the Virtual Channel specific status.

2.12.14 DMIVCMRCAP-DMI VCm Resource Capability Register

B/D/F/Type:0/0Address Offset:34-Reset Value:000Access:ROSize:321BIOS Optimal Default000)/0/DMIBA -37h)08000h bits)00000h	IR
Bit	Access	Reset Value	RST/ PWR	Description
31:16	RO	0h		Reserved (RSVD)
15	RO	1b	Uncore	 Reject Snoop Transactions (REJSNPT) 0 = Transactions with or without the No Snoop bit set within the TLP header are allowed on the VC. 1 = Any transaction for which the No Snoop attribute is applicable but is not set within the TLP Header will be rejected as an Unsupported Request
14:0	RO	0h		Reserved (RSVD)

2.12.15 DMIVCMRCTL-DMI VCm Resource Control Register

B/D/F/Type:0/0/0/DMIB/Address Offset:38-3BhReset Value:07000080hAccess:RW, ROSize:32 bitsBIOS Optimal Default00000h)/0/DMIBA -3Bh 000080h /, RO bits 000h	NR
Bit	Access	Reset Value	RST/ PWR	Description
				Virtual Channel enable (VCMEN)
				0 = Virtual Channel is disabled.
				1 = Virtual Channel is enabled. See exceptions below.
				Software must use the VC Negotiation Pending bit to check whether the VC negotiation is complete. When VC Negotiation Pending bit is cleared, a 1 read from this VC Enable bit indicates that the VC is enabled (Flow Control Initialization is completed for the PCI Express port). A 0 read from this bit indicates that the Virtual Channel is currently disabled.
31	RW	Оb	Uncore	 BIOS Requirement: To enable a Virtual Channel, the VC Enable bits for that Virtual Channel must be set in both Components on a Link. To disable a Virtual Channel, the VC Enable bits for that Virtual Channel must be cleared in both Components on a Link. Software must ensure that no traffic is using a Virtual Channel at the time it is disabled. Software must fully disable a Virtual Channel in both Components on a Link before re-enabling the Virtual Channel.
30:27	RO	0h		Reserved (RSVD)
26:24	RW	111b	Uncore	Virtual Channel ID (VCID) This field assigns a VC ID to the VC resource. Assigned value must be non-zero. This field cannot be modified when the VC is already enabled.
23:8	RO	0h		Reserved (RSVD)
7:0	RO	80h	Uncore	Traffic Class/Virtual Channel Map (TCVCMMAP): This field indicates the TCs (Traffic Classes) that are mapped to the VC resource. Bit locations within this field correspond to TC values. For example, when bit 7 is set in this field, TC7 is mapped to this VC resource. When more than one bit in this field is set, it indicates that multiple TCs are mapped to the VC resource. In order to remove one or more TCs from the TC/VC Map of an enabled VC, software must ensure that no new or outstanding transactions with the TC labels are targeted at the given Link.

2.12.16 DMIVCMRSTS-DMI VCm Resource Status Register

B/D/F/Type:OAddress Offset:3Reset Value:0Access:5Size:1BIOS Optimal Default0		0/0 3E- 000 RO- 16 fault 000)/0/DMIBA ·3Fh ·2h ·V bits 00h	NR
Bit	Access	Reset Value	RST/ PWR	Description
15:2	RO	0h		Reserved (RSVD)
1	RO-V	1b	Uncore	 Virtual Channel Negotiation Pending (VCNEGPND) 0 = The VC negotiation is complete. 1 = The VC resource is still in the process of negotiation (initialization or disabling). Software may use this bit when enabling or disabling the VC. This bit indicates the status of the process of Flow Control initialization. It is set by default on Reset, as well as whenever the corresponding Virtual Channel is Disabled or the Link is in the DL_Down state. It is cleared when the link successfully exits the FC_INIT2 state. Before using a Virtual Channel, software must check whether the VC Negotiation Pending fields for that Virtual Channel are cleared in both Components on a Link.
0	RO	0h		Reserved (RSVD)

2.12.17 DMIRCLDECH—DMI Root Complex Link Declaration Register

This capability declares links from the respective element to other elements of the root complex component to which it belongs and to an element in another root complex component. See PCI Express* specification for link/topology declaration requirements.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/0/0/DMIBA 40-43h 08010005h RO 32 bits		AR
Bit	Access	Reset Value	RST/ PWR	Description
31:20	RO	080h	Uncore	Pointer to Next Capability (PNC) This field contains the offset to the next PCI Express capability structure in the linked list of capabilities (Internal Link Control Capability).
19:16	RO	1h	Uncore	Link Declaration Capability Version (LDCV) Hardwired to 1 to indicate compliances with the 1.1 version of the PCI Express specification. Note: This version does not change for 2.0 compliance.
15:0	RO	0005h	Uncore	Extended Capability ID (ECID) a value of 0005h identifies this linked list item (capability structure) as being for PCI Express Link Declaration Capability.

2.12.18 DMIESD-DMI Element Self Description Register

This register provides information about the root complex element containing this Link Declaration Capability.

B/D/F/ Address Reset V Access: Size: BIOS O	B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Def		0/0/DMIBA -47h 000202h , RW-0 bits	AR
Bit	Access	Reset Value	RST/ PWR	Description
31:24	RO	01h	Uncore	Port Number (PORTNUM) This field specifies the port number associated with this element with respect to the component that contains this element. This port number value is utilized by the egress port of the component to provide arbitration to this Root Complex Element.
23:16	RW-O	00h	Uncore	Component ID (CID) This field identifies the physical component that contains this Root Complex Element. BIOS Requirement: This field must be initialized according to guidelines in the PCI Express* Isochronous/Virtual Channel Support Hardware Programming Specification (HPS).
15:8	RO	02h	Uncore	Number of Link Entries (NLE) This field indicates the number of link entries following the Element Self Description. This field reports 2 (one for MCH egress port to main memory and one to egress port belonging to ICH on other side of internal link).
7:4	RO	0h		Reserved (RSVD)
3:0	RO	2h	Uncore	Element Type (ETYP) This field indicates the type of the Root Complex Element. a value of 2h represents an Internal Root Complex Link (DMI).

2.12.19 DMILE1D-DMI Link Entry 1 Description Register

This register provides the first part of a Link Entry which declares an internal link to another Root Complex Element.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Def		0/0/0/DMIBA 50-53h 00000000h RW-0, RO 32 bits fault 0000h		AR
Bit	Access	Reset Value	RST/ PWR	Description
31:24	RW-O	00h	Uncore	Target Port Number (TPN) This field specifies the port number associated with the element targeted by this link entry (egress port of PCH). The target port number is with respect to the component that contains this element as specified by the target component ID. This can be programmed by BIOS, but the Reset Value will likely be correct because the DMI RCRB in the PCH will likely be associated with the default egress port for the PCH meaning it will be assigned port number 0.
23:16	RW-O	00h	Uncore	Target Component ID (TCID) Identifies the physical component that is targeted by this link entry. BIOS Requirement: This field must be initialized according to guidelines in the PCI Express* Isochronous/Virtual Channel Support Hardware Programming Specification (HPS).
15:2	RO	0h		Reserved (RSVD)
1	RO	0b	Uncore	Link Type (LTYP) This bit indicates that the link points to memory-mapped space (for RCRB). The link address specifies the 64-bit base address of the target RCRB.
0	RW-O	0b	Uncore	Link Valid (LV) 0 = Link Entry is not valid and will be ignored. 1 = Link Entry specifies a valid link.

2.12.20 DMILE1A-DMI Link Entry 1 Address Register

This register provides the second part of a Link Entry that declares an internal link to another Root Complex Element.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/0 58- 000 RW 32 fault 000)/0/DMIBA -5Bh)000000h '-0 bits)h	١R
Bit	Access	Reset Value	RST/ PWR	Description
31:12	RW-O	00000h	Uncore	Link Address (LA) Memory mapped base address of the RCRB that is the target element (egress port of PCH) for this link entry.
11:0	RO	0h		Reserved (RSVD)

2.12.21 DMILUE1A-DMI Link Upper Entry 1 Address Register

This register provides the second part of a Link Entry that declares an internal link to another Root Complex Element.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/0 5C- 000 RW 32 fault 000)/0/DMIBA -5Fh)000000h '-0 bits)000h	AR
Bit	Access	Reset Value	RST/ PWR	Description
31:8	RO	0h		Reserved (RSVD)
7:0	RW-O	00h	Uncore	Upper Link Address (ULA) Memory mapped base address of the RCRB that is the target element (egress port of PCH) for this link entry.

2.12.22 DMILE2D-DMI Link Entry 2 Description Register

This register provides the first part of a Link Entry that declares an internal link to another Root Complex Element.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Def		0/0/0/DMIBA 60-63h 00000000h RO, RW-0 32 bits fault 0000h		AR
Bit	Access	Reset Value	RST/ PWR	Description
31:24	RO	00h	Uncore	Target Port Number (TPN) This field specifies the port number associated with the element targeted by this link entry (Egress Port). The target port number is with respect to the component that contains this element as specified by the target component ID.
23:16	RW-O	00h	Uncore	Target Component ID (TCID)This field identifies the physical or logical component that is targeted by this link entry.BIOS Requirement: This field must be initialized according to guidelines in the PCI Express* Isochronous/Virtual Channel Support Hardware Programming Specification (HPS).
15:2	RO	0h		Reserved (RSVD)
1	RO	0b	Uncore	Link Type (LTYP) This field indicates that the link points to memory-mapped space (for RCRB). The link address specifies the 64-bit base address of the target RCRB.
0	RW-O	0b	Uncore	Link Valid (LV) 0 = Link Entry is not valid and will be ignored. 1 = Link Entry specifies a valid link.

2.12.23 DMILE2A-DMI Link Entry 2 Address Register

This register provides the second part of a Link Entry that declares an internal link to another Root Complex Element.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/0 68- 000 RW 32 fault 000)/0/DMIBA -6Bh)000000h '-0 bits)h	AR
Bit	Access	Reset Value	RST/ PWR	Description
31:12	RW-O	00000h	Uncore	Link Address (LA) Memory mapped base address of the RCRB that is the target element (Egress Port) for this link entry.
11:0	RO	0h		Reserved (RSVD)

2.12.24 LCAP-Link Capabilities Register

This register indicates DMI specific capabilities.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/0 84- 000 RW 32 fault 000	0/0/0/DMIBAR 84-87h 0001AC41h RW-O, RO, RW-OV 32 bits 00002h		
Bit	Access	Reset Value	RST/ PWR	Description	
31:18	RO	0h		Reserved (RSVD)	
17:15	RW-O	011b	Uncore	L1 Exit Latency (L1SELAT) This field indicates the length of time this Port requires to complete the transition from L1 to L0. The value 011b indicates the range of 4 us to less than 8 us. 000 = Less than 1µs 001 = 1 µs to less than 2 µs 010 = 2 µs to less than 4 µs 011 = 4 µs to less than 8 µs 100 = 8 µs to less than 16 µs 101 = 16 µs to less than 32 µs 110 = 32 µs-64 µs 111 = More than 64 µs Both bytes of this register that contain a portion of this field must be written simultaneously in order to prevent an intermediate (and undesired) value from ever existing.	
14:12	RW-O	010b	Uncore	LOS Exit Latency (LOSELAT) This field indicates the length of time this Port requires to complete the transition from LOs to LO. 000 = Less than 64 ns 001 = 64 ns to less than 128 ns 010 = 128 ns to less than 256 ns 011 = 256 ns to less than 512 ns 100 = 512 ns to less than 1 µs 101 = 1 µs to less than 2 µs 110 = 2 µs-4 µs 111 = More than 4 µs	

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Def		0/0/0/DMIBA 84-87h 0001AC41h RW-0, RO, RW 32 bits fault 00002h		NR /-OV
Bit	Access	Reset Value	RST/ PWR	Description
11:10	RO	11b	Uncore	Active State Link PM Support (ASLPMS) LOs & L1 entry supported.
9:4	RO	04h	Uncore	Max Link Width (MLW) This field indicates the maximum number of lanes supported for this link.
3:0	RW-OV	0001b	Uncore	Max Link Speed (MLS) This Reset Value reflects gen1. Later the field may be changed by BIOS to allow gen2 subject to Fuse enabled. Defined encodings are: 0001b = 2.5 GT/s Link speed supported 0010b = 5.0 GT/s and 2.5 GT/s Link speeds supported

2.12.25 LCTL-Link Control Register

This register allows control of PCI Express* link.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/0/0/DMIBA 88-89h 0000h RW, RW-V 16 bits ault 000h		AR
Bit	Access	Reset Value	RST/ PWR	Description
15:10	RO	0h		Reserved (RSVD)
9	RW	0b	Uncore	Hardware Autonomous Width Disable (HAWD) When set, this bit disables hardware from changing the Link width for reasons other than attempting to correct unreliable Link operation by reducing Link width. Devices that do not implement the ability autonomously to change Link width are permitted to hardwire this bit to 0b.
8	RO	0h		Reserved (RSVD)
7	RW	ОЬ	Uncore	 Extended Synch (ES) 0 = Standard Fast Training Sequence (FTS). 1 = Forces the transmission of additional ordered sets when exiting the L0s state and when in the Recovery state. This mode provides external devices (such as logic analyzers) monitoring the Link time to achieve bit and symbol lock before the link enters L0 and resumes communication. This is a test mode only and may cause other undesired side effects such as buffer overflows or underruns.
6	RO	0h		Reserved (RSVD)
5	RW-V	0b	Uncore	Retrain Link (RL) 0 = Normal operation. 1 = Full Link retraining is initiated by directing the Physical Layer LTSSM from L0, L0s, or L1 states to the Recovery state. This bit always returns 0 when read. This bit is cleared automatically (no need to write a 0).

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Def		0/0/0/DMIBA 88-89h 0000h RW, RW-V 16 bits ault 000h		AR
Bit	Access	Reset Value	RST/ PWR	Description
4	RW	Оb	Uncore	 Link Disable (LD) 0 = Normal operation 1 = link is disabled. Forces the LTSSM to transition to the Disabled state (using Recovery) from L0, L0s, or L1 states. Link retraining happens automatically on 0 to 1 transition, just like when coming out of reset. Writes to this bit are immediately reflected in the value read from the bit, regardless of actual Link state. After clearing this bit, software must honor timing requirements defined in Section 6.6.1 with respect to the first Configuration Read following a Conventional Reset.
3	RO	0b	Uncore	Read Completion Boundary (RCB) Hardwired to 0 to indicate 64 byte.
2	RO	0h		Reserved (RSVD)
1:0	RW	00b	Uncore	Active State PM (ASPM) This field controls the level of active state power management supported on the given link. 00 = Disabled 01 = LOS Entry Supported 10 = Reserved 11 = LOS and L1 Entry Supported

2.12.26 LSTS-DMI Link Status Register

This register indicates DMI status.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default)/0/DMIBA -8Bh)1h -V bits 1	NR
Bit	Access	Reset Value	RST/ PWR	Description
15:12	RO	0h		Reserved (RSVD)
11	RO-V	0b	Uncore	Link Training (LTRN) This field indicates that the Physical Layer LTSSM is in the Configuration or Recovery state, or that 1b was written to the Retrain Link bit but Link training has not yet begun. Hardware clears this bit when the LTSSM exits the Configuration/Recovery state once Link training is complete.
10:0	RO	0h		Reserved (RSVD)

2.12.27 LCTL2—Link Control 2 Register

B/D/F/ Address Reset V Access: Size:	Type: Offset: alue:	0/0 98- 000 RW 16)/0/DMIBAR -99h)2h 'S, RWS-V bits	
Bit	Access	Reset Value	RST/ PWR	Description
15:12	RWS	0000Ь	Powergood	Compliance De-emphasis (ComplianceDeemphasis) For 8 GT/s Data Rate: This field sets the Transmitter Preset level in Polling.Compliance state if the entry occurred due to the Enter Compliance bit being 1b. The encodings are defined in PCIe Specification, Section 4.2.3.2. For 5 GT/s Data Rate: This bit filed sets the de-emphasis level in POlling.Compliance state if the entry occurred due to the Enter Compliance bit being 1b. 0001b = -3.5 dB 0000b = -6 dB When the Link is operating at 2.5 GT/s, the setting of this bit has no effect. Components that support only 2.5 GT/s speed are permitted to hardwire this bit to 0b. For a Multi-Function device associated with an Upstream Port, the bit in Function 0 is of type RWS, and only Function 0 controls the component's Link behavior. In all other Functions of that device, this bit is 0b. This bit is intended for debug, compliance testing purposes. System firmware and software is allowed to modify this bit only during debug or compliance testing.
11	RWS	Ob	Powergood	Compliance SOS (compsos) When set to 1b, the LTSSM is required to send SKP Ordered Sets periodically in between the (modified) compliance patterns. For a Multi-Function device associated with an Upstream Port, the bit in Function 0 is of type RWS, and only Function 0 controls the component's Link behavior. In all other Functions of that device, this bit is of type RsvdP. The Reset Value of this bit is 0b. Components that support only the 2.5 GT/s speed are permitted to hardwire this field to 0b.
10	RWS	Ob	Powergood	Enter Modified Compliance (entermodcompliance) When this bit is set to 1b, the device transmits modified compliance pattern if the LTSSM enters Polling.Compliance state. Components that support only the 2.5 GT/s speed are permitted to hardwire this bit to 0b. Reset Value of this field is 0b.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/0/0/DMIBAR 98–99h 0002h RWS, RWS-V 16 bits			
Bit	Access	Reset Value	RST/ PWR	Description	
9:7	RWS-V	000Ь	Powergood	Transmit Margin (txmargin)This field controls the value of the non-deemphasized voltagelevel at the Transmitter pins. This field is reset to 000b onentry to the LTSSM Polling.Configuration substate (see PCIeSpecification, Chapter 4 for details of how the transmittervoltage level is determined in various states).000 = Normal operating range001 = 800-1200 mV for full swing and 400-700 mVfor half-swing010 - (n-1) = Values must be monotonic with a non-zeroslope. The value of n must be greater than 3and less than 7.At least two of these must be below thenormal operating rangen = 200-400 mV for full-swing and 100-200 mVfor half-swingn-111 = ReservedReset Value is 000b.Components that support only the 2.5 GT/s speed arepermitted to hardwire this bit to 0b.When operating in 5 GT/s mode with full swing, the de-emphasis ratio must be maintained within ±1 dB from thespecification defined operational value (either -3.5 or -6 dB).The processor supports the following values:000 = Normal operation (Reset Value); coefficients (cursor, precursor, postcursor) are at defined values001 = Coefficients are divided by 2010 = Coefficients are divided by 4011 = Coefficients are divided by 4 <td co<="" th=""></td>	
6	RWS	Ob	Powergood	Selectable De-emphasis (selectabledeemphasis) When the Link is operating at 5 GT/s speed, selects the level of de-emphasis. Encodings: 1b = -3.5 dB 0b = -6 dB When the Link is operating at 2.5 GT/s speed, the setting of this bit has no effect. Components that support only the 2.5 GT/s speed are permitted to hardwire this bit to 0b. NOTE: For DMI this bit has no effect in functional mode as DMI is half-swing and will use -3.5 dB whenever de-emphasis is enabled.	

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/0/0/DMIBAR 98–99h 0002h RWS, RWS-V 16 bits			
Bit	Access	Reset RST/ Value PWR		Description	
5	RWS	0b	Powergood	Hardware Autonomous Speed Disable (HASD) When set to 1b this bit disables hardware from changing the link speed for reasons other than attempting to correct unreliable link operation by reducing link speed.	
4	RWS	0b	Powergood	Enter Compliance (EC) Software is permitted to force a link to enter Compliance mode at the speed indicated in the Target Link Speed field by setting this bit to 1b in both components on a link and then initiating a hot reset on the link.	
3:0	RWS	2h	Powergood	Target Link Speed (TLS)For Downstream ports, this field sets an upper limit on linkoperational speed by restricting the values advertised by theupstream component in its training sequences.0001b = 2.5 Gb/s Target Link Speed0010b = 5 Gb/s Target Link Speed0100b = 5 Gb/s Target Link SpeedAll other encodings are reserved.If a value is written to this field that does not correspond to aspeed included in the Supported Link Speeds field, the result isundefined.The Reset Value of this field is the highest link speed supportedby the component (as reported in the Supported Link Speedsfield of the Link Capabilities Register) unless the correspondingplatform / form factor requires a different Reset Value.For both Upstream and Downstream ports, this field is used toset the target compliance mode speed when software is usingthe Enter Compliance bit to force a link into compliance mode.	

2.12.28 LSTS2-Link Status 2 Register

B/D/F/Type:0/0/0/DMIB/Address Offset:9A-9BhReset Value:0000hAccess:RO-VSize:16 bitsBIOS Optimal Default0000h)/0/DMIBA -9Bh)0h -V bits)0h	AR
Bit	Access	Reset Value	RST/ PWR	Description
15:1	RO	0h		Reserved (RSVD)
0	RO-V 0b Uncore		Uncore	Current De-emphasis Level (CURDELVL) When the Link is operating at 5 GT/s speed, this reflects the level of de-emphasis. 1b = -3.5 dB 0b = -6 dB When the Link is operating at 2.5 GT/s speed, this bit is 0b.

2.13 MCHBAR Registers in Memory Controller—Channel 0 Registers

Address Register **Register Name Reset Value** Access Symbol Offset 0-3FFFh RSVD Reserved 0h RO 4000-4003h TC_DBP_C0 Timing of DDR - bin parameters 00146666h RW-L 4004-4007h TC_RAP_C0 86104344h Timing of DDR - regular access parameters RW-L 4008-4027h RSVD Reserved _ _ SC_IO_LATE NCY_C0 IO Latency configuration 4028-402Bh 000E0000h RW-L 402C-409Fh RSVD Reserved _ PM_PDWN_c Power-down configuration register 40A0-40A3h 0000000h RW-L onfig_C0 40A4-40B3h RSVD Reserved _ 40BC-40C7h RSVD Reserved 0h RO ECCERRLOG0 ECC Error Log 0 40C8-40CBh 0000000h ROS-V C0 ECCERRLOG1 ECC Error Log 1 40CC-40CFh 00000000h ROS-V _C0 40D0-4293h RSVD Reserved _ _ 4294-4297h TC_RFP_C0 0000980Fh **Refresh Parameters** RW-L 46B41004h 4298-429Bh TC_RFTP_C0 **Refresh Timing Parameters** RW-L 429C-438Fh RSVD Reserved

Table 2-16. MCHBAR Registers in Memory Controller – Channel 0 Register Address Map

2.13.1 TC_DBP_CO—Timing of DDR – Bin Parameters Register

This register defines the BIN timing parameters for safe logic – tRCD, tRP, tCL, tWCL and tRAS.

B/D/F/Type:0/0/0/MCHBAAddress Offset:4000-4003hReset Value:00146666hAccess:RW-LSize:32 bitsBIOS Optimal Default00h)/0/MCHB/)0–4003h L46666h /-L bits ነ	AR MCO
Bit	Access	Reset Value	Reset RST/ Description	
31:24	RO	0h		Reserved (RSVD)
23:16	RW-L	14h	Uncore	tRAS in DCLK cycles (tRAS) Minimum ACT to PRE timing Range is 10 to 40 DCLK cycles
15:12	RW-L	6h	Uncore	Write CAS latency in DCLK cycles (tWCL) Delay from CAS WR command to data valid on DDR pins. Range is 5–15. The value 5 should not be programmed if the DEC_WRD bit in TC_RWP register is set.
11:8	RW-L	6h	Uncore	 CAS latency in DCLK cycles (tCL) This field is the Delay from CAS command to data out of DDR pins. This does not define the sample point in the IO. This is defined by training in round-trip register and other registers, because this is also affected by board delays. Delay from CAS command to data out of DDR pins. Range is 5–15. Notes: This does not define the sample point in the IO. This is defined by training in round-trip register and other registers, because this is also affected by training in round-trip register and other registers, because this is also affected by board delays. The range of 12–15 is not yet defined by JEDEC, will be tested only when such definition will exist.
7:4	RW-L	6h	Uncore	tRP in DCLK cycles (tRP) PRE to ACT same bank delay range is 4–15 DCLK cycles
3:0	RW-L	6h	Uncore	tRCD in DCLK cycles (tRCD) ACT to CAS (RD or WR) same bank delay tRCD range is between 4 and 15.

2.13.2 TC_RAP_CO—Timing of DDR – Regular Access Parameters Register

Thie register is for the regular timing parameters in DCLK cycles.

B/D/F/Type:0/0/0/MCHBAddress Offset:4004-4007hReset Value:86104344hAccess:RW-LSize:32 bits		0/0/MCHB/ 04–4007h L04344h '-L bits	AR MCO		
Bit	Access	Reset Value	RST/ PWR	Description	
31:30	RW-L	10b	Uncore	1n 2N or 3N selection (CMD_stretch) This field defines the operation mode of the command. 00 = N operation 10 = 2N operation 11 = 3N operation	
29	RW-L	0b	Uncore	 Command 3-state options (CMD_3st) This bit defines when command & address bus is driving. 0 = Drive when channel is active. Tri-stated when all ranks are in CKE-off or when memory is in SR or deeper. 1 = Command bus is always driving. When no new valid command is driven, previous command & address is driven 	
28:24	RW-L	06h	Uncore	tWR in DCLK cycles (tWR) Write recovery time. The range is 5 to 16 DCLK cycles.	
23:16	RW-L	10h	Uncore	tFAW in DCLK cycles (tFAW) Four-activate window is the time frame in which maximum of 4 ACT commands to the same rank are allowed. The minimum value is 4*tRRD, whereas the maximum value is 63 DCLK cycles.	
15:12	RW-L	4h	Uncore	tWTR in DCLK cycles (tWTR) Delay from internal WR transaction to internal RD transaction. The minimum delay is 4 DCLK cycles, whereas the maximum delay is 8 DCLK cycles.	
11:8	RW-L	3h	Uncore	tCKE in DCLK cycles (tCKE) CKE minimum pulse width in DCLK cycles. The minimum value is 3 DCLK cycles, whereas the maximum value is the actual value of tXP.	
7:4	RW-L	4h	Uncore	tRTP in DCLK cycles (tRTP) Minimum delay from CAS-RD to PRE. The minimum delay is 4 DCLK cycles, whereas the maximum delay is 8 DCLK cycles.	
3:0	RW-L	4h	Uncore	tRRD in DCLK cycles (tRRD) tRRD is the minimum delay between two ACT commands targeted to different banks in the same rank. The minimum delay is 4 DCLK cycles, whereas the maximum delay is 7 cycles.	

2.13.3 SC_IO_LATENCY_CO—IO Latency configuration Register

This register identifies the I/O latency per rank, and I/O compensation (global).

B/D/F/Type:0/0/0/MCHBAAddress Offset:4028-402BhReset Value:000E0000hAccess:RW-LSize:32 bitsBIOS Optimal Default00h				AR MCO
Bit	Access	Reset Value	RST/ PWR	Description
31:22	RO	0h		Reserved (RSVD)
21:16	RW-L	0Eh	Uncore	Round trip – I/O compensation (RT_IOCOMP)
15:12	RW-L	0h	Uncore	IO latency Rank 1 DIMM 1 (IOLAT_R1D1)
11:8	RW-L	0h	Uncore	IO latency Rank 0 DIMM 1 (IOLAT_R0D1)
7:4	RW-L	0h	Uncore	IO latency Rank 1 DIMM 0 (IOLAT_R1D0)
3:0	RW-L	0h	Uncore	IO latency Rank 0 DIMM 0 (IOLAT_R0D0)

2.13.4 TC_SRFTP_CO-Self Refresh Timing Parameters Register

This register is for the Self-refresh timing parameters.

B/D/F/Type:0/0/0/MCHBAAddress Offset:42A4-42A7hReset Value:0100B200hAccess:RW-LSize:32 bitsBIOS Optimal Default0h				AR MCO
Bit	Access	Reset Value	RST/ PWR	Description
31:28	RW-L	0h	Uncore	(tMOD) This field is the time between MRS command and any other command in DCLK cycles. Actual value is 8 + programmed-Value. For example, when programming 4 in the field, tMOD value is actually 12 DCLK cycles
27:26	RO	0h		Reserved (RSVD)
25:16	RW-L	100h	Uncore	(tZQOPER) Defines the period required for ZQCL after SR exit
15:12	RW-L	Bh	Uncore	(tXS_offset) Delay from SR exit to the first DDR command tXS = tRFC+10ns. Setup of tXS_offset is # of cycles for 10 ns. Range is between 3 and 11 DCLK cycles.
11:0	RW-L	200h	Uncore	(tXSDLL) Delay between DDR SR exit and the first command that requires data RD/WR from DDR is in the range of 128 to 1024 DCLK cycles, though all JEDEC DDRs assume 512 DCLK cycles

2.13.5 PM_PDWN_config_C0-Power-down Configuration Register

This register defines the power-down (CKE-off) operation – power-down mode, idle timer and global / per rank decision.

B/D/F/ Address Reset V Access: Size: BIOS Op	Type: 5 Offset: alue: ptimal Def	0/0 400 000 RW 32 fault 000	0/0/MCHB/ 30-40B3h 000000h /-L bits 000h	AR MCO	
Bit	Access Reset RST/ Value PWR			Description	
31:13	RO	0h		Reserved (RSVD)	
12	RW-L	0b	Uncore	 Global power-down (GLPDN) 1 = When this bit is set, the power-down decision is global for channel. 0 = When this bit is clear, a separate decision is taken for each rank. 	
11:8	RW-L	0h	Uncore	Power-down mode (PDWN_mode) Selects the mode of power-down: 0h = No Power-Down 1h = APD 2h = PPD 3h = APD+PPD 4h = Reserved 6h = PPD_DLLoff 7h = APD+PPD_DLLoff 8h-Fh = Reserved Note: When selecting DLL-off or APD-DLL off, DIMM MR0 register bit 12 (PPD) must equal 0. Note: When selecting APD, PPD or APD-PPD DIMM MR0 register bit 12 (PPD) must equal 1. The value 0x0 (no power-down) is a don't care.	
7:0	RW-L	00h	Uncore	Power-down idle timer (PDWN_idle_counter) This field defines the rank idle period in DCLK cycles that causes power-down entrance.	

2.13.6 ECCERRLOG0_C0-ECC Error Log 0 Register

B/D/F/ Address Reset V Access: Size: BIOS Op	Type: 5 Offset: alue: ptimal De	0/0 400 803 32 fault 000	0/0/MCHBAF C8-40CBh 000000h S-V bits 00h	ξ MC0	
Bit	Access	Reset Value	t RST/ PWR Description		
31:29	ROS-V	000b	Powergood	Error Bank (ERRBANK) This field holds the Bank Address of the read transaction that had the ECC error.	
28:27	ROS-V	00b	Powergood	Error Rank (ERRRANK) This field holds the Rank ID of the read transaction that had the ECC error.	
26:24	ROS-V	000b	Powergood	Error Chunk (ERRCHUNK) Holds the chunk number of the error stored in the register.	
23:16	ROS-V	00h	Powergood	Error Syndrome (ERRSYND) This field contains the error syndrome. A value of FFh indicates that the error is due to poisoning.	
15:2	RO	0h		Reserved (RSVD)	
1	ROS-V	Оb	Powergood	Uncorrectable Error Status (MERRSTS) This bit is set when an uncorrectable multiple-bit error occurs on a memory read data transfer. When this bit is set, the address that caused the error and the error syndrome are also logged and they are locked until this bit is cleared. This bit is cleared when the corresponding bit in 0.0.0.PCI.ERRSTS is cleared.	
0	ROS-V	Ob	Powergood	Correctable Error Status (CERRSTS) This bit is set when a correctable single-bit error occurs on a memory read data transfer. When this bit is set, the address that caused the error and the error syndrome are also logged and they are locked to further single bit errors, until this bit is cleared. A multiple bit error that occurs after this bit is set will override the address/error syndrome information. This bit is cleared when the corresponding bit in 0.0.0.PCI.ERRSTS is cleared.	

2.13.7 ECCERRLOG1_C0—ECC Error Log 1 Register

B/D/F/ Address Reset Va Access: Size:	Type: Offset: alue:	0/0 400 000 RO3 32	/0/0/MCHBAR MC0 DCC-40CFh 0000000h DS-V 2 bits	
Bit	Access	Reset Value	RST/ PWR	Description
31:16	ROS-V	0000h	Powergood	Error Column (ERRCOL) This field holds the DRAM column address of the read transaction that had the ECC error.
15:0	ROS-V	0000h	Powergood	Error Row (ERRROW) This field holds the DRAM row (page) address of the read transaction that had the ECC error.

2.13.8 TC_RFP_CO-Refresh Parameters Register

This register provides the refresh parameters.

B/D/F/Type:0/0/0/MCHBAAddress Offset:4294-4297hReset Value:0000980FhAccess:RW-LSize:32 bitsBIOS Optimal Default0000h)/0/MCHB/ 94-4297h 00980Fh /-L bits)0h	AR MCO
Bit	Access	Reset Value	RST/ PWR	Description
31:18	RO	0h		Reserved (RSVD)
17:16	RW-L	00b	Uncore	Double Refresh Control (DOUBLE_REFRESH_CONTROL) This field will allow the double self refresh enable/disable. 00 = Double refresh rate when DRAM is WARM/HOT. 01 = Force double self refresh regardless of temperature. 10 = Disable double self refresh regardless of temperature. 11 = Reserved
15:12	RW-L	9h	Uncore	Refresh panic WM (Refresh_panic_wm) tREFI count level in which the refresh priority is panic (default is 9) It is recommended to set the panic WM at least to 9, in order to use the maximum no-refresh period possible.
11:8	RW-L	8h	Uncore	Refresh high priority WM (Refresh_HP_WM) tREFI count level that turns the refresh priority to high (default is 8)
7:0	RW-L	0Fh	Uncore	Rank idle timer for opportunistic refresh (OREF_RI) Rank idle period that defines an opportunity for refresh, in DCLK cycles

2.13.9 TC_RFTP_C0—Refresh Timing Parameters Register

This register provides the Refresh timing parameters.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/0/0/MCHBA 4298-429Bh 46B41004h RW-L 32 bits		AR MCO
Bit	Access	Reset RST/ Value PWR		Description
31:25	RW-L	23h	Uncore	9 * tREFI Period of minimum between 9*tREFI and tRAS maximum (normally 70 us) in 1024 * DCLK cycles (default is 35h).
24:16	RW-L	0B4h	Uncore	Refresh execution time (tRFC) Time of refresh – from beginning of refresh until next ACT or refresh is allowed (in DCLK cycles, default is 180h).
15:0	RW-L	1004h	Uncore	tREFI period in DCLK cycles (tREFI) This field defines the average period between refreshes, and the rate that tREFI counter is incremented (in DCLK cycles, default is 4100h).

2.14 MCHBAR Registers in Memory Controller – Channel 1

Table 2-17. MCHBAR Registers in Memory Controller – Channel 1 Register Address Map

Address	Register Symbol	Register Name	Reset Value	Access
0-43FFh	RSVD	Reserved	0h	RO
4400-4403h	TC_DBP_C1	Timing of DDR – bin parameters	00146666h	RW-L
4404-4407h	TC_RAP_C1	Timing of DDR – regular access parameters	86104344h	RW-L
4408-4427h	RSVD	Reserved	_	_
4428-442Bh	SC_IO_LATENCY_ C1	IO Latency configuration	000E0000h	RW-L
442C-44AFh	RSVD	Reserved	—	_
44B0-44B3h	PM_PDWN_config _C1	Power-down configuration register	00000000h	RW-L
44BC-44C7h	RSVD	Reserved	0h	RO
44C8-44CBh	ECCERRLOG0_C1	ECC Error Log 0	00000000h	ROS-V
44CC-44CFh	ECCERRLOG1_C1	ECC Error Log 1	00000000h	ROS-V
44D0-4693h	RSVD	Reserved	—	_
4694-4697h	TC_RFP_C1	Refresh parameters	0000980Fh	RW-L
4698-469Bh	TC_RFTP_C1	Refresh timing parameters	46B41004h	RW-L
469C-469Fh	RSVD	Reserved	00000000h	RW-L
46A0-46A3h	RSVD	Reserved	0000000h	RW-L
46A4-46A7h	TC_SRFTP_C1	Self Refresh Timing Parameters	0100B200h	RW-L
46A8-478Fh	RSVD	Reserved	_	

2.14.1 TC_DBP_C1—Timing of DDR – Bin Parameters Register

This register defines the BIN timing parameters for safe logic – tRCD, tRP, tCL, tWCL, and tRAS.

B/D/F/Type:OAddress Offset:4Reset Value:0Access:8Size:3BIOS Optimal Default0)/0/MCHBA)0-4403h L46666h -L bits 1	AR MC1
Bit	Access	Reset Value	RST/ PWR	Description
31:24	RO	0h		Reserved (RSVD)
23:16	RW-L	14h	Uncore	tRAS in DCLK cycles (tRAS) Minimum ACT to PRE timing Range is 10 to 40 DCLK cycles.
15:12	RW-L	6h	Uncore	Write CAS latency in DCLK cycles (tWCL) Delay from CAS WR command to data valid on DDR pins. Range is 5–15. The value 5 should not be programmed if the DEC_WRD bit in TC_RWP register is set.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/0 440 001 RW 32 fault 00f)/0/MCHB/ 00-4403h .46666h -L bits	AR MC1
Bit	Access	Reset Value	RST/ PWR	Description
11:8	RW-L	6h	Uncore	 CAS latency in DCLK cycles (tCL) Delay from CAS command to data out of DDR pins. This does not define the sample point in the I/O. This is defined by training in round-trip register and other registers, because this is also affected by board delays Delay from CAS command to data out of DDR pins. Range is 5–15. Note: This does not define the sample point in the IO. This is defined by training in round-trip register and other registers, because this is also affected by board delays. Note: The range of 12–15 is not yet defined by JEDEC, will be tested only when such definition will exist.
7:4	RW-L	6h	Uncore	tRP in DCLK cycles (tRP) PRE to ACT same bank delay range is 4–15 DCLK cycles
3:0	RW-L	6h	Uncore	tRCD in DCLK cycles (tRCD) ACT to CAS (RD or WR) same bank delay tRCD range is between 4 and 15.

2.14.2 TC_RAP_C1—Timing of DDR – Regular Access Parameters Register

This register provides the regular timing parameters in DCLK cycles.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/0/0/MCHB/ 4404–4407h 86104344h RW-L 32 bits		AR MC1
Bit	Access	Reset Value	RST/ PWR	Description
31:30	RW-L	10b	Uncore	1n 2N or 3N selection (CMD_stretch) This field defines the operation mode of the command 00 = 1N operation 10 = 2N operation 11 = 3N operation
29	RW-L	0b	Uncore	 Command 3-state options (CMD_3st) This bit defines when command & address bus is driving. 0 = Drive when channel is active. Tri-stated when all ranks are in CKE-off or when memory is in SR or deeper. 1 = Command bus is always driving. When no new valid command is driven, previous command & address is driven
28:24	RW-L	06h	Uncore	tWR in DCLK cycles (tWR) Write recovery time. The range is 5 to 16 DCLK cycles.
23:16	RW-L	10h	Uncore	tFAW in DCLK cycles (tFAW) Four-activate window is the time frame in which maximum of 4 ACT commands to the same rank are allowed. The minimum value is 4*tRRD, whereas the maximum value is 63 DCLK cycles.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/0/0/MCHB/ 4404-4407h 86104344h RW-L 32 bits		AR MC1
Bit	Access	Reset Value	RST/ PWR	Description
15:12	RW-L	4h	Uncore	tWTR in DCLK cycles (tWTR) Delay from internal WR transaction to internal RD transaction. The minimum delay is 4 DCLK cycles, whereas the maximum delay is 8 DCLK cycles.
11:8	RW-L	3h	Uncore	tCKE in DCLK cycles (tCKE) CKE minimum pulse width in DCLK cycles. The minimum value is 3 DCLK cycles, whereas the maximum value is the actual value of tXP.
7:4	RW-L	4h	Uncore	tRTP in DCLK cycles (tRTP) Minimum delay from CAS-RD to PRE. The minimum delay is 4 DCLK cycles, whereas the maximum delay is 8 DCLK cycles.
3:0	RW-L	4h	Uncore	tRRD in DCLK cycles (tRRD) tRRD is the minimum delay between two ACT commands targeted to different banks in the same rank. The minimum delay is 4 DCLK cycles, whereas the maximum delay is 7 cycles.

2.14.3 SC_IO_LATENCY_C1—IO Latency configuration Register

This register identifies the I/O latency per rank, and I/O compensation (global).

B/D/F/Type:0,Address Offset:44Reset Value:00Access:RSize:33BIOS Optimal Default00			0/0/MCHB/ 28–442Bh 0E0000h '-L bits 1	AR MC1
Bit	Access	Reset Value	RST/ PWR	Description
31:22	RO	0h		Reserved (RSVD)
21:16	RW-L	0Eh	Uncore	Round trip – I/O compensation (RT_IOCOMP)
15:12	RW-L	0h	Uncore	IO latency Rank 1 DIMM 1 (IOLAT_R1D1)
11:8	RW-L	0h	Uncore	IO latency Rank 0 DIMM 1 (IOLAT_R0D1)
7:4	RW-L	0h	Uncore	IO latency Rank 1 DIMM 0 (IOLAT_R1D0)
3:0	RW-L	0h	Uncore	IO latency Rank 0 DIMM 0 (IOLAT_R0D0)

2.14.4 PM_PDWN_config_C1—Power-down Configuration Register

This register defines the power-down (CKE-off) operation – power-down mode, idle timer and global / per rank decision.

B/D/F/Type:0/Address Offset:44Reset Value:00Access:RVSize:32BIOS Optimal Default00		0/0 44E 000 RW 32 fault 000)/0/MCHB/ 30-44B3h)00000h '-L bits)00h	AR MC1
Bit	Access	Reset Value	RST/ PWR	Description
31:13	RO	0h		Reserved (RSVD)
12	RW-L	0b	Uncore	Global power-down (GLPDN) 1 = Power-down decision is global for channel. 0 = Separate decision is taken for each rank.
11:8	RW-L	Oh	Uncore	Power-down mode (PDWN_mode) Selects the mode of power-down: 0h = No Power-Down 1h = APD 2h = PPD 3h = APD+PPD 4h = Reserved 5h = Reserved 6h = PPD_DLLoff 7h =: APD+PPD_DLLoff 8h-Fh = Reserved Note: When selecting DLL-off or APD-DLL off, DIMM MR0 register bit 12 (PPD) must equal 0. Note: When selecting APD, PPD or APD-PPD DIMM MR0 register bit 12 (PPD) must equal 1. The value 0h (no power-down) is a don't care.
7:0	RW-L	00h	Uncore	Power-down idle timer (PDWN_idle_counter) This field defines the rank idle period in DCLK cycles that causes power-down entrance.

2.14.5 ECCERRLOG0_C1—ECC Error Log 0 Register

B/D/F/Type:0/0/0/Address Offset:44C8-4Reset Value:000000Access:ROS-VSize:32 bitsBIOS Optimal Default0000h			0/0/MCHBAR C8-44CBh 000000h S-V bits 00h	MC1
Bit	Access	Reset Value	RST/ PWR	Description
31:29	ROS-V	000b	Powergood	Error Bank (ERRBANK) This field holds the Bank Address of the read transaction that had the ECC error.
28:27	ROS-V	00b	Powergood	Error Rank (ERRRANK) This field holds the Rank ID of the read transaction that had the ECC error.
26:24	ROS-V	000b	Powergood	Error Chunk (ERRCHUNK) Holds the chunk number of the error stored in the register.
23:16	ROS-V	00h	Powergood	Error Syndrome (ERRSYND) This field contains the error syndrome. A value of FFh indicates that the error is due to poisoning.
15:2	RO	0h		Reserved (RSVD)
1	ROS-V	Оb	Powergood	Uncorrectable Error Status (MERRSTS) This bit is set when an uncorrectable multiple-bit error occurs on a memory read data transfer. When this bit is set, the address that caused the error and the error syndrome are also logged and they are locked until this bit is cleared. This bit is cleared when the corresponding bit in 0.0.0.PCI.ERRSTS is cleared.
0	ROS-V	ОЬ	Powergood	Correctable Error Status (CERRSTS) This bit is set when a correctable single-bit error occurs on a memory read data transfer. When this bit is set, the address that caused the error and the error syndrome are also logged and they are locked to further single bit errors, until this bit is cleared. A multiple bit error that occurs after this bit is set will override the address/error syndrome information. This bit is cleared when the corresponding bit in 0.0.0.PCI.ERRSTS is cleared.

2.14.6 ECCERRLOG1_C1—ECC Error Log 1 Register

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/0 440 000 RO3 32)/0/MCHBAR CC-44CFh 000000h S-V bits	R MC1
Bit	Access	Reset Value	RST/ PWR	Description
31:16	ROS-V	0000h	Powergood	Error Column (ERRCOL) This field holds the DRAM column address of the read transaction that had the ECC error.
15:0	ROS-V	0000h	Powergood	Error Row (ERRROW) This field holds the DRAM row (page) address of the read transaction that had the ECC error.

2.14.7 TC_RFP_C1—Refresh Parameters Register

This register provides refresh parameters.

B/D/F/Type:0//Address Offset:46Reset Value:00Access:RWSize:32BIOS Optimal Default00)/0/MCHB 94-4697h 00980Fh -L bits 00h	AR MC1	
Bit	Access	Reset Value	RST/ PWR	Description
31:18	RO	0h		Reserved (RSVD)
17:16	RW-L	00b	Uncore	Double Refresh Control (DOUBLE_REFRESH_CONTROL) This field will allow the double self refresh enable/disable. 00 = Double refresh rate when DRAM is WARM/HOT. 01 = Force double self refresh regardless of temperature. 10 = Disable double self refresh regardless of temperature. 11 = Reserved
15:12	RW-L	9h	Uncore	Refresh panic WM (Refresh_panic_wm) tREFI count level in which the refresh priority is panic (default is 9) It is recommended to set the panic WM at least to 9, in order to use the maximum no-refresh period possible
11:8	RW-L	8h	Uncore	Refresh high priority WM (Refresh_HP_WM) tREFI count level that turns the refresh priority to high (default is 8)
7:0	RW-L	0Fh	Uncore	Rank idle timer for opportunistic refresh (OREF_RI) Rank idle period that defines an opportunity for refresh, in DCLK cycles

2.14.8 TC_RFTP_C1—Refresh Timing Parameters Register

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/0/0/MCHBA 4698-469Bh 46B41004h RW-L 32 bits		AR MC1
Bit	Access	Reset Value	RST/ PWR	Description
31:25	RW-L	23h	Uncore	9 * tREFI (tREFIx9) Period of minimum between 9*tREFI and tRAS maximum (normally 70 us) in 1024 * DCLK cycles (default is 35h) – need to reduce 100 DCLK cycles – uncertainty on timing of panic refresh
24:16	RW-L	0B4h	Uncore	Refresh Execution Time (tRFC) Time of refresh – from beginning of refresh until next ACT or refresh is allowed (in DCLK cycles, default is 180h)
15:0	RW-L	1004h	Uncore	tREFI Period in DCLK Cycles (tREFI) Defines the average period between refreshes, and the rate that tREFI counter is incremented (in DCLK cycles, default is 4100h)

Thie register provides refresh timing parameters.

2.14.9 TC_SRFTP_C1—Self refresh Timing Parameters Register

B/D/F/Type:0/(Address Offset:46.Reset Value:010Access:RWSize:32BIOS Optimal Default0h)/0/MCHB/ A4-46A7h)0B200h -L bits	AR MC1	
Bit	Access	Reset Value	RST/ PWR	Description
31:28	RW-L	0h	Uncore	(tMOD) The time between MRS command and any other command in DCLK cycles. Actual value is 8 + programmed-Value. For example when programming 4 in the field, tMOD value is actually 12 DCLK cycles.
27:26	RO	0h		Reserved (RSVD)
25:16	RW-L	100h	Uncore	(tZQOPER) This field defines the period required for ZQCL after SR exit.
15:12	RW-L	Bh	Uncore	(tXS_offset) Delay from SR exit to the first DDR command. tXS = tRFC+10ns. Setup of tXS_offset is # of cycles for 10 ns. The range is between 3 and 11 DCLK cycles.
11:0	RW-L	200h	Uncore	(tXSDLL) Delay between DDR SR exit and the first command that requires data RD/WR from DDR is in the range of 128 to 1024 DCLK cycles, though all JEDEC DDRs assume 512 DCLK cycles.

Thie register provides self-refresh timing parameters.

2.15 MCHBAR Registers in Memory Controller – Integrated Memory Peripheral Hub (IMPH)

Table 2-18. MCHBAR Registers in Memory Controller –Integrated Memory Peripheral Hub (IMPH) Register Address Map

Address Offset	Register Symbol	Register Name	Reset Value	Access
0-740Bh	RSVD	Reserved	—	—
740C-740Fh	CRDTCTL3	Credit Control 3	B124F851h	RW-L
7410-7413h	CRDTCTL4	Credit Control 4	00000017h	RW-L
7410C-7FFFh	RSVD	Reserved	—	—

2.15.1 CRDTCTL3—Credit Control 3 Register

This register will have the minimum Read Return Tracker credits for each of the $\ensuremath{\mathsf{PEG/DMI/GSA}}$ streams.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/0/0/MCHBA 740C-740Fh B124F851h RW-L 32 bits		AR IMPH
Bit	Access	Reset Value	RST/ PWR	Description
31:27	RW-L	16h	Uncore	GSA VC1 Minimum Completion Credits (GSAVC1) Minimum number of credits for GSA VC1 completions
26:24	RW-L	1h	Uncore	GSA VC0 Minimum Completion Credits (GSAVC0) Minimum number of credits for GSA VC0 completions
23:21	RW-L	1h	Uncore	PEG60 VC0 Minimum Completion Credits (PEG60VC0) Minimum number of credits for PEG60 VC0 completions
20:18	RW-L	1h	Uncore	PEG12 VC0 Minimum Completion Credits (PEG12VC0) Minimum number of credits for PEG12 VC0 completions
17:15	RW-L	1h	Uncore	PEG11 VC0 Minimum Completion Credits (PEG11VC0) Minimum number of credits for PEG11 VC0 completions
14:12	RW-L	7h	Uncore	PEG10 VC0 Minimum Completion Credits (PEG10VC0) Minimum number of credits for PEG10 VC0 completions
11:9	RW-L	4h	Uncore	DMI VC1 Minimum Completion Credits (DMIVC1) Minimum number of credits for DMI VC1 completions
8:6	RW-L	1h	Uncore	DMI VCm Minimum Completion Credits (DMIVCM) Minimum number of credits for DMI VCm completions
5:3	RW-L	2h	Uncore	DMI VCp Minimum Completion Credits (DMIVCP) Minimum number of credits for DMI VCp completions
2:0	RW-L	1h	Uncore	DMI VC0 Minimum Completion Credits (DMIVC0) Minimum number of credits for DMI VC0 completions

2.15.2 CRDTCTL4—Credit Control 4 Register

This register will have the minimum Read Return Tracker credits for each of the PEG/DMI/GSA streams.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/0/0/MCHBA 7410-7413h 00000017h RW-L 32 bits		AR IMPH
Bit	Access	Reset Value	RST/ PWR	Description
31:6	RO	0h	Uncore	Reserved (RSVD)
5:0	RW-L	17h	Uncore	Read Return Tracker Shared Credits (RDRT_SHRD) This field indicates the number of credits that are in the RDRTRN shared pool. BIOS should configure this field to a value that is equal to 64 minus the sum of all minimum dedicated RDRTN credits.

2.16 MCHBAR Registers in Memory Controller – Common

Table 2-19. MCHBAR Registers in Memory Controller – Common Register Address Map

Address Offset	Register Symbol	Register Name	Reset Value	Access
0-4FFFh	RSVD	Reserved	0h	RO
5000-5003h	MAD_CHNL	Address decoder Channel Configuration	00000024h	RW-L
5004-5007h	MAD_DIMM_ch0	Address Decode Channel 0	00600000h	RW-L
5008-500Bh	MAD_DIMM_ch1	Address Decode Channel 1	00600000h	RW-L
500C-505Fh	RSVD	Reserved	—	_
5060-5063h	PM_SREF_config	Self Refresh Configuration	000100FFh	RW-L
5064-50FBh	RSVD	Reserved	—	-

2.16.1 MAD_CHNL—Address Decoder Channel Configuration Register

This register defines which channel is assigned to be channel A, channel B, and channel C according to the rule:

 $size(A) \ge size(B) \ge size(C)$

Since the processor implements only two channels, channel C is always channel 2, and its size is always 0.

B/D/F/Type:0/Address Offset:50Reset Value:00Access:RVSize:32BIOS Optimal Default00		0/0 500 RW 32 fault 000	0/0/0/MCHBAR_MCMAIN 5000-5003h 00000024h RW-L 32 bits 0000000h	
Bit	Access	Reset Value	RST/ PWR	Description
31:6	RO	0h		Reserved (RSVD)
5:4	RW-L	10b	Uncore	Channel C assignment (CH_C) CH_C - defines the smallest channel: 00 = Channel 0 01 = Channel 1 10 = Channel 2
3:2	RW-L	01b	Uncore	Channel B assignment (CH_B) CH_B - defines the mid-size channel: 00 = Channel 0 01 = Channel 1 10 = Channel 2
1:0	RW-L	00b	Uncore	Channel A assignment (CH_A) CH_A - defines the largest channel: 00 = Channel 0 01 = Channel 1 10 = Channel 2

2.16.2 MAD_DIMM_ch0—Address Decode Channel 0 Register

This register defines channel characteristics – number of DIMMs, number of ranks, size, ECC, interleave options, and ECC options.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/0/ 5004 0060 RW-L 32 bit ult 00h	0/MCHBAR -5007h 0000h ts	L_MCMAIN
Bit	Access	Reset Value	RST/ PWR	Description
31:26	RO	0h		Reserved (RSVD)
25:24	RW-L	00b	Uncore	 ECC is active in the channel (ECC) 00 = No ECC active in the channel 01 = ECC is active in IO, ECC logic is not active In this case, on write accesses the data driven on ECC byte is copied from DQ 7:0 (to be used in training or IOSAV) 10 = ECC is disabled in IO, but ECC logic is enabled (to be used in ECC4ANA mode) 11 = ECC active in both I/O and ECC logic
23	RO	0h		Reserved (RSVD)
22	RW-L	1b	Uncore	Enhanced Interleave mode (Enh_Interleave) 0 = off 1 = on
21	RW-L	1b	Uncore	Rank Interleave (RI) 0 = off 1 = on
20	RW-L	0b	Uncore	DIMM B DDR width (DBW) 0 = X8 chips 1 = X16 chips
19	RW-L	0b	Uncore	DIMM A DDR width (DAW) 0 = X8 chips 1 = X16 chips
18	RW-L	0b	Uncore	DIMM B number of ranks (DBNOR) 0 = single rank 1 = dual rank
17	RW-L	0b	Uncore	DIMM A number of ranks (DANOR) 0 = single rank 1 = dual rank
16	RW-L	0b	Uncore	DIMM A select (DAS) Selects which of the DIMMs is DIMM A – should be the larger DIMM: 0 = DIMM 0 1 = DIMM 1
15:8	RW-L	00h	Uncore	Size of DIMM B (DIMM_B_Size) Size of DIMM B in 256 MB multiples
7:0	RW-L	00h	Uncore	Size of DIMM A (DIMM_A_Size) Size of DIMM A in 256 MB multiples

2.16.3 MAD_DIMM_ch1—Address Decode Channel 1 Register

This register defines channel characteristics – number of DIMMs, number of ranks, size, ECC, interleave options, and ECC options.

B/D/F/Ty Address O Reset Valu Access: Size: BIOS Opti	ipe:)ffset: ue: imal Defa	0/0/ 5008 0060 RW-L 32 bit ult 00h	0/MCHBAR -500Bh 0000h ts	_MCMAIN
Bit	Access	Reset Value	RST/ PWR	Description
31:26	RO	0h		Reserved (RSVD)
25:24	RW-L	00Ь	Uncore	 ECC is active in the channel (ECC) 00 = no ECC active in the channel 01 = ECC is active in IO, ECC logic is not active In this case, on write accesses the data driven on ECC byte is copied from DQ 7:0 (to be used in training or IOSAV) 10 = ECC is disabled in IO, but ECC logic is enabled (to be used in ECC4ANA mode) 11 = ECC active in both I/O and ECC logic
23	RO	0h		Reserved (RSVD)
22	RW-L	1b	Uncore	Enhanced Interleave mode (Enh_Interleave) 0 = off 1 = on
21	RW-L	1b	Uncore	Rank Interleave (RI) 0 = off 1 = on
20	RW-L	0b	Uncore	DIMM B DDR width (DBW) 0 = X8 chips 1 = X16 chips
19	RW-L	0b	Uncore	DIMM A DDR width (DAW) 0 = X8 chips 1 = X16 chips
18	RW-L	0b	Uncore	DIMM B number of ranks (DBNOR) 0 = single rank 1 = dual rank
17	RW-L	0b	Uncore	DIMM A number of ranks (DANOR) 0 = single rank 1 = dual rank
16	RW-L	0b	Uncore	DIMM A select (DAS) Selects which of the DIMMs is DIMM A – should be the larger DIMM. 0 = DIMM 0 1 = DIMM 1
15:8	RW-L	00h	Uncore	Size of DIMM B (DIMM_B_Size) Size of DIMM B in 256 MB multiples
7:0	RW-L	00h	Uncore	Size of DIMM A (DIMM_A_Size) Size of DIMM A in 256 MB multiples

2.16.4 PM_SREF_config—Self Refresh Configuration Register

This is a self refresh mode control register – defines if and when DDR can go into SR.

B/D/F/Type:0/0/0/MCHBAAddress Offset:5060-5063hReset Value:000100FFhAccess:RW-LSize:32 bitsBIOS Optimal Default0000h			0/0/MCHB/ 50-5063h)100FFh /-L bits)0h	AR_MCMAIN
Bit	Access	Reset Value	RST/ PWR	Description
31:16	RO	0h		Reserved (RSVD)
15:0	RW-L	00FFh	Uncore	Idle timer init value (Idle_timer) This value is used when the "SREF_enable" field is set. It defines the number of cycles that there should not be any transaction in order to enter self-refresh. It is programmable 1 to 64K-1. In DCLK=800 it determines time of up to 82 us.

2.17 Memory Controller MMIO Registers Broadcast Group Registers

Table 2-20. Memory Controller MMIO Registers Broadcast Group Register Address Map

Address Offset	Register Symbol	Register Name	Reset Value	Access
0-4CAFh	RSVD	Reserved	_	_
4CB0-4CB3h	PM_PDWN_conf ig	Power-down Configuration	00000000h	RW-L
4CB4-4CC7h	RSVD	Reserved	—	-
4CC8-4CCBh	ECCERRLOG0	ECC Error Log 0	00000000h	ROS-V
4CCC-4CCFh	ECCERRLOG1	ECC Error Log 1	00000000h	ROS-V
4CD0-4F83h	RSVD	Reserved	—	-
4F84-4F87h	PM_CMD_PWR	Power Management Command Power	00000000h	RW-LV
4F88-4F8Bh	PM_BW_LIMIT_ config	BW Limit Configuration	FFFF03FFh	RW-L
4F8C-4F8Fh	RSVD	Reserved	FF1D1519h	RW-L

2.17.1 PM_PDWN_config—Power-down Configuration Register

This register defines the power-down (CKE-off) operation – power-down mode, idle timer and global / per rank decision.

B/D/F/ Address Reset V Access: Size: BIOS Op	Type: 5 Offset: alue: ptimal Def	0/0 4Cl 000 RW 32 fault 000)/0/MCHB/ 30-4CB3h)000000h /-L bits)00h	AR_MCBCAST
Bit	Access	Reset Value	RST/ PWR	Description
31:13	RO	0h		Reserved (RSVD)
12	RW-L	0b	Uncore	Global power-down (GLPDN) Global Power Down. When this bit is set, the power-down decision is global for channel. When this register is clear, a separate decision is taken for each rank.
11:8	RW-L	0h	Uncore	Power-down mode (PDWN_mode) Selects the mode of power-down. All encodings not in table are reserved. Note: When selecting DLL-off or APD-DLL off, DIMM MR0 register bit 12 (PPD) must equal 0. Note: When selecting APD, PPD or APD-PPD DIMM MR0 register bit 12 (PPD) must equal 1. The value 0h (no power-down) is a don't care. 0h = No Power-Down 1h = APD 2h = PPD 3h = APD+PPD 4h = Reserved 5h = Reserved 5h = Reserved 6h = PPD_DLLoff 7h = APD+PPD_DLLoff
7:0	RW-L	00h	Uncore	Power-down idle timer (PDWN_idle_counter) This field defines the rank idle period in DCLK cycles that causes power-down entrance.

2.17.2 ECCERRLOG0-ECC Error Log 0 Register

B/D/F/Type:0/0/0/MCHBARAddress Offset:4CC8-4CCBhReset Value:00000000hAccess:ROS-VSize:32 bitsBIOS Optimal Default0000h			D/0/MCHBAF C8-4CCBh D00000h S-V bits D0h	R_MCBCAST
Bit	Access	Reset Value	RST/ PWR	Description
31:29	ROS-V	000b	Powergood	Error Bank (ERRBANK) This field holds the Bank Address of the read transaction that had the ECC error.
28:27	ROS-V	00b	Powergood	Error Rank (ERRRANK) This field holds the Rank ID of the read transaction that had the ECC error.
26:24	ROS-V	000b	Powergood	Error Chunk (ERRCHUNK) Holds the chunk number of the error stored in the register.
23:16	ROS-V	00h	Powergood	Error Syndrome (ERRSYND) This field contains the error syndrome. A value of FFh indicates that the error is due to poisoning.
15:2	RO	0h		Reserved (RSVD)
1	ROS-V	Оb	Powergood	Uncorrectable Error Status (MERRSTS) This bit is set when an uncorrectable multiple-bit error occurs on a memory read data transfer. When this bit is set, the address that caused the error and the error syndrome are also logged and they are locked until this bit is cleared. This bit is cleared when the corresponding bit in 0.0.0.PCI.ERRSTS is cleared.
0	ROS-V	Ob	Powergood	Correctable Error Status (CERRSTS) This bit is set when a correctable single-bit error occurs on a memory read data transfer. When this bit is set, the address that caused the error and the error syndrome are also logged and they are locked to further single bit errors, until this bit is cleared. A multiple bit error that occurs after this bit is set will override the address/error syndrome information. This bit is cleared when the corresponding bit in 0.0.0.PCI.ERRSTS is cleared.

2.17.3 ECCERRLOG1–ECC Error Log 1 Register

B/D/F/Type:0/0/0/MCHBARAddress Offset:4CCC-4CCFhReset Value:00000000hAccess:ROS-VSize:32 bits)/0/MCHBAF CC-4CCFh)00000h S-V bits	R_MCBCAST	
Bit	Access	Reset Value	RST/ PWR	Description
31:16	ROS-V	0000h	Powergood	Error Column (ERRCOL) This field holds the DRAM column address of the read transaction that had the ECC error.
15:0	ROS-V	0000h	Powergood	Error Row (ERRROW) This field holds the DRAM row (page) address of the read transaction that had the ECC error.

2.17.4 PM_CMD_PWR—Power Management Command Power Register

This register defines the power contribution of each command – ACT+PRE, CAS-read, and CAS write. Assumption is that the ACT is always followed by a PRE (although not immediately), and REF commands are issued in a fixed rate and there is no need to count them. The register has 3 8-bit fields.

B/D/F/Type:0/0/0/MCHB/Address Offset:4F84-4F87hReset Value:0000000hAccess:RW-LVSize:32 bitsBIOS Optimal Default00h			0/0/MCHB/ 34-4F87h 000000h /-LV bits 1	AR_MCBCAST
Bit	Access	Reset Value	RST/ PWR	Description
31:24	RO	0h		Reserved (RSVD)
23:16	RW-LV	00h	Uncore	Power contribution of CAS Write command (PWR_CAS_W)
15:8	RW-LV	00h	Uncore	Power contribution of CAS Read command (PWR_CAS_R)
7:0	RW-LV	00h	Uncore	Power contribution of RAS command and PRE command (PWR_RAS_PRE) Power contribution of RAS command and PRE command. The value should be the sum of the two commands, assuming that each RAS command for a given page is followed by a PRE command to the same page in the near future.

2.17.5 PM_BW_LIMIT_CONFIG—BW Limit Configuration Register

This register defines the BW throttling at temperature.

Note: The field "BW_limit_tf may not be changed in run-time. Other fields may be changed in run-time.

B/D/F/Type:0/0/0/MCHBAAddress Offset:4F88-4F8BhReset Value:FFFF03FFhAccess:RW-LSize:32 bitsBIOS Optimal Default5F7003FFh)/0/MCHB/ 38-4F8Bh F03FFh -L bits 7003FFh	AR_MCBCAST	
Bit	Access	Reset Value	RST/ PWR	Description
31:24	RW-L	FFh	Uncore	BW limit when rank is hot (BW_limit_hot) Number of transactions allowed per rank when status of rank is hot. Range: 0-255h
23:16	RW-L	FFh	Uncore	BW limit when rank is warm (BW_limit_warm) Number of transactions allowed per rank when status of rank is warm. Range: 0–255h
15:10	RO	0h		Reserved (RSVD)
9:0	RW-L	3FFh	Uncore	BW limit time frame (BW_limit_tf) Time frame in which the BW limit is enforced, in DCLK cycles. Range: 1-1023h Note: The field "BW_limit_tf may not be changed in run-time.

2.18 Integrated Graphics VTd Remapping Engine Registers

Table 2-21. Integrated Graphics VTd Remapping Engine Register Address Map (Sheet 1 of
2)

Address Offset	Register Symbol	Register Name	Reset Value	Access
0-3h	VER_REG	Version Register	00000010h	RO
4–7h	RSVD	Reserved	0h	RO
8-Fh	CAP_REG	Capability Register	00C0000020 E60262h	RO
10-17h	ECAP_REG	Extended Capability Register	0000000000 F0101Ah	RO, RO-V
18-1Bh	GCMD_REG	Global Command Register	00000000h	RO, WO
1C-1Fh	GSTS_REG	Global Status Register	00000000h	RO-V, RO
20-27h	RTADDR_REG	Root-Entry Table Address Register	0000000000 000000h	RW
28-2Fh	CCMD_REG	Context Command Register	0800000000 000000h	RW, RW-V, RO- V
30-33h	RSVD	Reserved	0h	RO
34-37h	FSTS_REG	Fault Status Register	00000000h	RO, ROS-V, RW1CS
38-3Bh	FECTL_REG	Fault Event Control Register	80000000h	RW, RO-V
3C-3Fh	FEDATA_REG	Fault Event Data Register	00000000h	RW
40-43h	FEADDR_REG	Fault Event Address Register	00000000h	RW
44-47h	FEUADDR_REG	Fault Event Upper Address Register	00000000h	RW
48-57h	RSVD	Reserved	0h	RO
58-5Fh	AFLOG_REG	Advanced Fault Log Register	0000000000 000000h	RO
60-63h	RSVD	Reserved	0h	RO
64-67h	PMEN_REG	Protected Memory Enable Register	00000000h	RW, RO-V
68-6Bh	PLMBASE_REG	Protected Low-Memory Base Register	00000000h	RW
6C-6Fh	PLMLIMIT_REG	Protected Low-Memory Limit Register	00000000h	RW
70-77h	PHMBASE_REG	Protected High-Memory Base Register	0000000000 000000h	RW
78-7Fh	PHMLIMIT_REG	Protected High-Memory Limit Register	0000000000 000000h	RW
80-87h	IQH_REG	Invalidation Queue Head Register	0000000000 000000h	RO-V
88-8Fh	IQT_REG	Invalidation Queue Tail Register	0000000000 000000h	RW-L
90-97h	IQA_REG	Invalidation Queue Address Register	0000000000 000000h	RW-L
98-9Bh	RSVD	Reserved	0h	RO
9C-9Fh	ICS_REG	Invalidation Completion Status Register	00000000h	RW1CS
A0-A3h	IECTL_REG	Invalidation Event Control Register	80000000h	RW-L, RO-V
A4-A7h	IEDATA_REG	Invalidation Event Data Register	00000000h	RW-L
A8–ABh	IEADDR_REG	Invalidation Event Address Register	00000000h	RW-L

Table 2-21.	Integrated Graphics VTd Remapping Engine Register Address Map (Sheet 2 of
	2)

Address Offset	Register Symbol	Register Name	Reset Value	Access
AC-AFh	IEUADDR_REG	Invalidation Event Upper Address Register	00000000h	RW-L
B0-B7h	RSVD	Reserved	0h	RO
B8-BFh	IRTA_REG	Interrupt Remapping Table Address Register	000000000 0000000h	RW-L
C0-FFh	RSVD	Reserved	0h	RO
100-107h	IVA_REG	Invalidate Address Register	000000000 0000000h	RW
108–10Fh	IOTLB_REG	IOTLB Invalidate Register	020000000 0000000h	RO-V, RW, RW-V
110-1FFh	RSVD	Reserved	0h	RO
200-207h	FRCDL_REG	Fault Recording Low Register	000000000 0000000h	ROS-V
208-20Fh	FRCDH_REG	Fault Recording High Register	0000000000 000000h	RO, RW1CS, ROS-V
210-FEFh	RSVD	Reserved	Oh	RO
FF0-FF3h	VTPOLICY	DMA Remap Engine Policy Control	00000000h	RW-L, RO, RO- KFW, RW-KL

2.18.1 VER_REG—Version Register

This register reports the architecture version supported. Backward compatibility for the architecture is maintained with new revision numbers, allowing software to load remapping hardware drivers written for prior architecture versions.

B/D/F/Type:0/0/0/GFXVTAddress Offset:0-3hReset Value:00000010hAccess:R0Size:32 bitsBIOS Optimal Default000000h)/0/GFXVT }h)00010h bits)000h	BAR
Bit	Access	Reset Value	RST/ PWR	Description
31:8	RO	0h		Reserved (RSVD)
7:4	RO	0001b	Uncore	Major Version number (MAX) Indicates supported architecture version.
3:0	RO	0000b	Uncore	Minor Version number (MIN) Indicates supported architecture minor version.

2.18.2 CAP_REG—Capability Register

This register reports general remapping hardware capabilities.

B/D/F/Type:0/0/0/GFXVTAddress Offset:8-FhReset Value:00C0000020E6Access:ROSize:64 bitsBIOS Optimal Default000h)/0/GFXVT ⁻ h C0000020E bits Dh	BAR 60262h	
Bit	Access	Reset Value	RST/ PWR	Description
63:56	RO	0h		Reserved (RSVD)
55	RO	1b	Uncore	 DMA Read Draining (DRD) 0 = Hardware does not support draining of DMA read requests. 1 = Hardware supports draining of DMA read requests.
54	RO	1b	Uncore	 DMA Write Draining (DWD) 0 = Hardware does not support draining of DMA write requests. 1 = Hardware supports draining of DMA write requests.
				Maximum Address Mask Value (MAMV)
53:48	RO	000000b	Uncore	The value in this field indicates the maximum supported value for the Address Mask (AM) field in the Invalidation Address register (IVA_REG) and IOTLB Invalidation Descriptor (iotlb_inv_dsc).
				This field is valid only when the PSI field in Capability register is reported as set.
47:40	RO	00000000 b	Uncore	Number of Fault-recording Registers (NFR) Number of fault recording registers is computed as N+1, where N is the value reported in this field. Implementations must support at least one fault recording register (NFR = 0) for each remapping hardware unit in the platform. The maximum number of fault recording registers per remapping hardware unit is 256.
				Page Selective Invalidation (PSI)
39	RO	0b	Uncore	 0 = Hardware supports only domain and global invalidates for IOTLB 1 = Hardware supports page selective, domain and global invalidates for IOTLB
				Hardware implementations reporting this field as set are recommended to support a Maximum Address Mask Value (MAMV) value of at least 9.
38:38	RO	0h		Reserved (RSVD)
37:34	RO	0000Ь	Uncore	Super-Page Support (SPS) This field indicates the super page sizes supported by hardware. A value of 1 in any of these bits indicates the corresponding super-page size is supported. The super-page sizes corresponding to various bit positions within this field are: 0 = 21-bit offset to page frame (2 MB) 1 = 30-bit offset to page frame (1 GB) 2 = 39-bit offset to page frame (512 GB) 3 = 48-bit offset to page frame (1 TB) Hardware implementations supporting a specific super-page size must support all smaller super-page sizes; that is, only valid values for this field are 0001b, 0011b, 0111b, 1111b

B/D/F/Type:0/0,Address Offset:8-FIReset Value:0000Access:ROSize:64 bBIOS Optimal Default0000)/0/GFXVT ⁵ h C0000020E bits Dh	BAR 60262h	
Bit	Access	Reset Value	RST/ PWR	Description
33:24	RO	020h	Uncore	Fault-recording Register offset (FRO) This field specifies the location to the first fault recording register relative to the register base address of this remapping hardware unit. If the register base address is X, and the value reported in this field is Y, the address for the first fault recording register is calculated as X+(16*Y).
23	RO	1b	Uncore	 Isochrony (ISOCH) 0 = Remapping hardware unit has no critical isochronous requesters in its scope. 1 = Remapping hardware unit has one or more critical isochronous requesters in its scope. To ensure isochronous performance, software must ensure invalidation operations do not impact active DMA streams from such requesters. This implies, when DMA is active, software performs page-selective invalidations (and not coarser invalidations).
22	RO	1b	Uncore	 Zero Length Read (ZLR) 0 = Remapping hardware unit blocks (and treats as fault) zero length DMA read requests to write-only pages. 1 = Remapping hardware unit supports zero length DMA read requests to write-only pages. DMA remapping hardware implementations are recommended to report ZLR field as set.
21:16	RO	100110b	Uncore	Maximum Guest Address Width (MGAW) This field indicates the maximum DMA virtual addressability supported by remapping hardware. The Maximum Guest Address Width (MGAW) is computed as (N+1), where N is the value reported in this field. For example, a hardware implementation supporting 48-bit MGAW reports a value of 47h (101111b) in this field. If the value in this field is X, untranslated and translated DMA requests to addresses above $2^{(x+1)-1}$ are always blocked by hardware. Translations requests to address above $2^{(x+1)-1}$ from allowed devices return a null Translation Completion Data Entry with R=W=0. Guest addressability for a given DMA request is limited to the minimum of the value reported through this field and the adjusted guest address width of the corresponding page-table structure. (Adjusted guest address widths supported by hardware are reported through the SAGAW field). Implementations are recommended to support MGAW at least equal to the physical addressability (host address width) of the platform.
15:13	RO	0h		Reserved (RSVD)

B/D/F/Type:0/0/0/GFXVTAddress Offset:8-FhReset Value:00C0000020EAccess:ROSize:64 bitsBIOS Optimal Default000h				BAR 60262h
Bit	Access	Reset Value	RST/ PWR	Description
12:8	RO	00010Ь	Uncore	Supported Adjusted Guest Address Widths (SAGAW) This 5-bit field indicates the supported adjusted guest address widths (which in turn represents the levels of page-table walks for the 4 KB base page size) supported by the hardware implementation. A value of 1 in any of these bits indicates the corresponding adjusted guest address width is supported. The adjusted guest address widths corresponding to various bit positions within this field are: 0 = 30-bit AGAW (2-level page table) 1 = 39-bit AGAW (3-level page table) 2 = 48-bit AGAW (4-level page table) 3 = 57-bit AGAW (5-level page table) 4 = 64-bit AGAW (6-level page table) Software must ensure that the adjusted guest address width used to setup the page tables is one of the supported guest address widths reported in this field.
7	RO	Ob	Uncore	 Caching Mode (CM) 0 = Not-present and erroneous entries are not cached in any of the remapping caches. Invalidations are not required for modifications to individual not present or invalid entries. However, any modifications that result in decreasing the effective permissions or partial permission increases require invalidations for them to be effective. 1 = Not-present and erroneous mappings may be cached in the remapping caches. Any software updates to the remapping structures (including updates to "not-present" or erroneous entries) require explicit invalidation. Hardware implementations of this architecture must support a value of 0 in this field. Protected High-Memory Region (PHMR)
6	RO	1b	Uncore	0 = Protected high-memory region is not supported.1 = Protected high-memory region is supported.
5	RO	1b	Uncore	Protected Low-Memory Region (PLMR) 0 = Protected low-memory region is not supported. 1 = Protected low-memory region is supported.

B/D/F/Type:0/0/0/GFXVTBAddress Offset:8-FhReset Value:00C0000020E6Access:ROSize:64 bitsBIOS Optimal Default000h)/0/GFXVT ^{Fh} C0000020E bits Dh	BAR :60262h
Bit	Access	Reset Value	RST/ PWR	Description
4	RO	0b	Uncore	 Required Write-Buffer Flushing (RWBF) 0 = No write-buffer flushing is needed to ensure changes to memory-resident structures are visible to hardware. 1 = Software must explicitly flush the write buffers to ensure updates made to memory-resident remapping structures are visible to hardware.
3	RO	0b	Uncore	 Advanced Fault Logging (AFL) 0 = Advanced fault logging is not supported. Only primary fault logging is supported. 1 = Advanced fault logging is supported.
2:0	RO	010Ь	Uncore	 Number of domains supported (ND) 000 = Hardware supports 4-bit domain-ids with support for up to 16 domains. 001 = Hardware supports 6-bit domain-ids with support for up to 64 domains. 010 = Hardware supports 8-bit domain-ids with support for up to 256 domains. 011 = Hardware supports 10-bit domain-ids with support for up to 1024 domains. 100 = Hardware supports 12-bit domain-ids with support for up to 4K domains. 100 = Hardware supports 14-bit domain-ids with support for up to 16K domains. 110 = Hardware supports 16-bit domain-ids with support for up to 64K domains.

2.18.3 ECAP_REG-Extended Capability Register

This Register reports remapping hardware extended capabilities.

B/D/F/Type: 0/0/0/GFXVT Address Offset: 10-17h Reset Value: 000000000F Access: RO, RO-V Size: 64 bits BIOS Optimal Default 00000000000)/0/GFXVT -17h)00000000F , RO-V bits)000000000	BAR 0101Ah h	
Bit	Access	Reset Value	RST/ PWR	Description
63:24	RO	0h		Reserved (RSVD)
23:20	RO	1111b	Uncore	Maximum Handle Mask Value (MHMV) The value in this field indicates the maximum supported value for the Handle Mask (HM) field in the interrupt entry cache invalidation descriptor (iec_inv_dsc). This field is valid only when the IR field in Extended Capability register is reported as set.
19:18	RO	0h		Reserved (RSVD)
17:8	RO	010h	Uncore	IOTLB Register Offset (IRO) This field specifies the offset to the IOTLB registers relative to the register base address of this remapping hardware unit. If the register base address is X, and the value reported in this field is Y, the address for the first IOTLB invalidation register is calculated as $X+(16*Y)$.
7	RO	0b	Uncore	 Snoop Control (SC) 0 = Hardware does not support 1-setting of the SNP field in the page-table entries. 1 = Hardware supports the 1-setting of the SNP field in the page-table entries.
6	RO	0b	Uncore	 Pass Through (PT) 0 = Hardware does not support pass-through translation type in context entries. 1 = Hardware supports pass-through translation type in context entries.
5	RO	0b	Uncore	 Caching Hints (CH) 0 = Hardware does not support IOTLB caching hints (ALH and EH fields in context-entries are treated as reserved(1 = Hardware supports IOLTB caching hints through the ALH and EH fields in context-entries.
4	RO	0h		Reserved (RSVD)
3	RO-V	1b	Uncore	Interrupt Remapping Support (IR) 0 = Hardware does not support interrupt remapping. 1 = Hardware supports interrupt remapping. Implementations reporting this field as set must also support Queued Invalidation (QI)
2	RO	Ob	Uncore	Device IOTLB Support (DI) 0 = Hardware does not support device-IOTLBs. 1 = Hardware supports Device-IOTLBs. Implementations reporting this field as set must also support Queued Invalidation (QI)
1	RO-V	1b	Uncore	Queued Invalidation Support (QI) 0 = Hardware does not support queued invalidations. 1 = Hardware supports queued invalidations.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default)/0/GFXVT -17h 00000000F RO-V bits 000000000	BAR 0101Ah h
Bit	Access	Reset Value	RST/ PWR	Description
0	RO	Оb	Uncore	 Coherency (C) This field indicates if hardware access to the root, context, page-table and interrupt-remap structures are coherent (snooped) or not. 0 = Hardware accesses to remapping structures are non-coherent. 1 = Hardware accesses to remapping structures are coherent. Hardware access to advanced fault log and invalidation queue are always coherent.

2.18.4 GCMD_REG-Global Command Register

This register controls remapping hardware. If multiple control fields in this register need to be modified, software must serialize the modifications through multiple writes to this register.

B/D/F/Type:0/0Address Offset:18-Reset Value:000Access:R0,Size:32 tBIOS Optimal Default000		0/0/0/GFXVTBAR 18–1Bh 00000000h RO, WO 32 bits 000000h		
Bit	Access	Reset Value	RST/ PWR	Description
31	WO	ОЬ	Uncore	Translation Enable (TE)Software writes to this field to request hardware to enable/disable DMA-remapping:0 = Disable DMA remapping1 = Enable DMA remappingHardware reports the status of the translation enable operation through the TES field in the Global Status register.There may be active DMA requests in the platform when software updates this field. Hardware must enable or disable remapping logic only at deterministic transaction boundaries, so that any in- flight transaction is either subject to remapping or not at all.Hardware implementations supporting DMA draining must drain any in-flight DMA read/write requests queued within the Root- Complex before completing the translation enable command and reflecting the status of the command through the TES field in the Global Status register.The value returned on a read of this field is undefined.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/0 18- 000 RO, 32 fault 000)/0/GFXVT -1Bh 000000h WO bits 0000h	BAR
Bit	Access	Reset Value	RST/ PWR	Description
				Set Root Table Pointer (SRTP)
				Software sets this field to set/update the root-entry table pointer used by hardware. The root-entry table pointer is specified through the Root-entry Table Address (RTA_REG) register. Hardware reports the status of the "Set Root Table Pointer" operation through the RTPS field in the Global Status register. The "Set Root Table Pointer" operation must be performed before
				enabling or re-enabling (after disabling) DMA remapping through the TE field.
30	wo	ОЬ	Uncore	After a "Set Root Table Pointer" operation, software must globally invalidate the context cache and then globally invalidate of IOTLB. This is required to ensure hardware uses only the remapping structures referenced by the new root table pointer, and not stale cached entries. While DMA remapping hardware is active, software may update the root table pointer through this field. However, to ensure valid in-flight DMA requests are deterministically remapped, software must ensure that the structures referenced by the new root table pointer are programmed to provide the same remapping results as the structures referenced by the previous root-table pointer. Clearing this bit has no effect. The value returned on read of this field is undefined.
				Set Fault Log (SFL)
				fault logging.
		Оb		Software sets this field to request hardware to set/update the fault-log pointer used by hardware. The fault-log pointer is specified through Advanced Fault Log register.
29	RO		Uncore	Hardware reports the status of the 'Set Fault Log' operation through the FLS field in the Global Status register.
				The fault log pointer must be set before enabling advanced fault logging (through EAFL field). Once advanced fault logging is enabled, the fault log pointer may be updated through this field while DMA remapping is active.
				Clearing this bit has no effect. The value returned on read of this field is undefined.
				Enable Advanced Fault Logging (EAFL)
				This field is valid only for implementations supporting advanced fault logging. Software writes to this field to request hardware to enable or disable advanced fault logging: 0 = Disable advanced fault logging. In this case, translation
28	RO	ОЬ	Uncore	 rauits are reported through the Fault Recording registers. 1 = Enable use of memory-resident fault log. When enabled, translation faults are recorded in the memory-resident log. The fault log pointer must be set in hardware (through the SFL field) before enabling advanced fault logging. Hardware reports the status of the advanced fault logging enable operation through the AFLS field in the Global Status register. The value returned on read of this field is undefined.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/0 18- 000 RO, 32 fault 000)/0/GFXVT -1Bh)000000h , WO bits)000h	BAR
Bit	Access	Reset Value	RST/ PWR	Description
				Write Buffer Flush (WBF)
				This bit is valid only for implementations requiring write buffer flushing.
27	RO	0b	Uncore	Software sets this field to request that hardware flush the Root- Complex internal write buffers. This is done to ensure any updates to the memory-resident remapping structures are not held in any internal write posting buffers.
				Hardware reports the status of the write buffer flushing operation through the WBFS field in the Global Status register.
				Clearing this bit has no effect. The value returned on a read of this field is undefined.
26	WO	Оb	Uncore	Queued Invalidation Enable (QIE) This field is valid only for implementations supporting queued invalidations. Software writes to this field to enable or disable queued invalidations. 0 = Disable queued invalidations. 1 = Enable use of queued invalidations. Hardware reports the status of queued invalidation enable operation through OIES field in the Global Status register
				The value returned on a read of this field is undefined.
25	wo	Ob	Uncore	Interrupt Remapping Enable (IRE)This field is valid only for implementations supporting interruptremapping.0 = Disable interrupt-remapping hardware1 = Enable interrupt-remapping hardwareHardware reports the status of the interrupt remapping enableoperation through the IRES field in the Global Status register.There may be active interrupt requests in the platform whensoftware updates this field. Hardware must enable or disableinterrupt-remapping logic only at deterministic transactionboundaries, so that any in-flight interrupts are either subject toremapping or not at all.Hardware implementations must drain any in-flight interruptsrequests queued in the Root-Complex before completing theinterrupt-remapping enable command and reflecting the status ofthe command through the IRES field in the Global Status register.The value returned on a read of this field is undefined.

B/D/F/Type:0/0/0/GFXVTEAddress Offset:18-1BhReset Value:00000000hAccess:RO, WOSize:32 bitsBIOS Optimal Default000000h)/0/GFXVT -1Bh)000000h , WO bits)000h	BAR
Bit	Access	Reset Value	RST/ PWR	Description
				Set Interrupt Remap Table Pointer (SIRTP)
				This field is valid only for implementations supporting interrupt- remapping.
	wo	Ob	Uncore	Software sets this field to set/update the interrupt remapping table pointer used by hardware. The interrupt remapping table pointer is specified through the Interrupt Remapping Table Address (IRTA_REG) register.
				Hardware reports the status of the 'Set Interrupt Remap Table Pointer' operation through the IRTPS field in the Global Status register.
				The 'Set Interrupt Remap Table Pointer' operation must be performed before enabling or re-enabling (after disabling) interrupt-remapping hardware through the IRE field.
24				After a 'Set Interrupt Remap Table Pointer' operation, software must globally invalidate the interrupt entry cache. This is required to ensure hardware uses only the interrupt-remapping entries referenced by the new interrupt remap table pointer, and not any stale cached entries.
				While interrupt remapping is active, software may update the interrupt remapping table pointer through this field. However, to ensure valid in-flight interrupt requests are deterministically remapped, software must ensure that the structures referenced by the new interrupt remap table pointer are programmed to provide the same remapping results as the structures referenced by the previous interrupt remap table pointer.
				Clearing this bit has no effect. The value returned on a read of this field is undefined.
23:0	RO	0h		Reserved (RSVD)

2.18.5 GSTS_REG-Global Status Register

This register reports general remapping hardware status.

B/D/F/ Address Reset V Access: Size: BIOS Op	Type: 5 Offset: alue: otimal De	0/0 1C- 000 RO 32 fault 000	0/0/GFXVT -1Fh 000000h -V, RO bits 0000h	BAR
Bit	Access	Reset Value	RST/ PWR	Description
31	RO-V	0b	Uncore	Translation Enable Status (TES)This field indicates the status of DMA-remapping hardware.0 = DMA-remapping hardware is not enabled1 = DMA-remapping hardware is enabled
30	RO-V	Оb	Uncore	 Root Table Pointer Status (RTPS) This field indicates the status of the root- table pointer in hardware. This field is: cleared by hardware when software sets the SRTP field in the Global Command register. set by hardware when hardware completes the 'Set Root Table Pointer' operation using the value provided in the Root-Entry Table Address register.
29	RO	Ob	Uncore	 Fault Log Status (FLS) This field is: cleared by hardware when software Sets the SFL field in the Global Command register. set by hardware when hardware completes the 'Set Fault Log Pointer' operation using the value provided in the Advanced Fault Log register.
28	RO	0b	Uncore	Advanced Fault Logging Status (AFLS) This field is valid only for implementations supporting advanced fault logging. It indicates the advanced fault logging status: 0 = Advanced Fault Logging is not enabled. 1 = Advanced Fault Logging is enabled.
27	RO	Ob	Uncore	 Write Buffer Flush Status (WBFS) This field is valid only for implementations requiring write buffer flushing. This field indicates the status of the write buffer flush command. It is: set by hardware when software sets the WBF field in the Global Command register. cleared by hardware when hardware completes the write buffer flushing operation.
26	RO-V	0b	Uncore	Queued Invalidation Enable Status (QIES)This field indicates queued invalidation enable status.0 = Queued invalidation is not enabled1 = Queued invalidation is enabled
25	RO-V	0b	Uncore	Interrupt Remapping Enable Status (IRES) This field indicates the status of Interrupt-remapping hardware. 0 = Interrupt-remapping hardware is not enabled 1 = Interrupt-remapping hardware is enabled
24	RO-V	ОЬ	Uncore	 Interrupt Remapping Table Pointer Status (IRTPS) This field indicates the status of the interrupt remapping table pointer in hardware. This field is: cleared by hardware when software sets the SIRTP field in the Global Command register. set by hardware when hardware completes the set interrupt remap table pointer operation using the value provided in the Interrupt Remapping Table Address register.
23:0	RO	0h		Reserved (RSVD)

2.18.6 RTADDR_REG—Root-Entry Table Address Register

This register providing the base address of root-entry table.

B/D/F/Type:0/0Address Offset:20-Reset Value:000Access:RWSize:64BIOS Optimal Default000		/0/0/GFXVTBAR 0-27h 00000000000000h W 4 bits 00000000h		
Bit	Access	Reset Value	RST/ PWR	Description
63:39	RO	0h		Reserved (RSVD)
38:12	RW	0000000h	Uncore	Root Table Address (RTA) This field points to base of page aligned, 4 KB-sized root-entry table in system memory. Hardware ignores and not implements bits 63:HAW, where HAW is the host address width. Software specifies the base address of the root-entry table through this register, and programs it in hardware through the SRTP field in the Global Command register. Reads of this register returns value that was last programmed to it.
11:0	RO	0h		Reserved (RSVD)

2.18.7 CCMD_REG—Context Command Register

This register manages context cache. The act of writing the uppermost byte of the CCMD_REG with the ICC field set causes the hardware to perform the context-cache invalidation.

B/D/F/ Address Reset V Access: Size: BIOS Op	Type: offset: alue: ptimal De	0/0 28- 080 RW 64 fault 000	0/0/GFXVT -2Fh 0000000000 , RW-V, RC bits 0000000h	BAR 00000h D-V
Bit	Access	Reset Value	RST/ PWR	Description
63	RW-V	Oh	Uncore	Invalidate Context-Cache (ICC) Software requests invalidation of context-cache by setting this field. Software must also set the requested invalidation granularity by programming the CIRG field. Software must read back and check the ICC field is Clear to confirm the invalidation is complete. Software must not update this register when this field is set. Hardware clears the ICC field to indicate the invalidation request is complete. Hardware also indicates the granularity at which the invalidation operation was performed through the CAIG field. Software must submit a context-cache invalidation request through this field only when there are no invalidation requests pending at this remapping hardware unit. Since information from the context-cache may be used by hardware to tag IOTLB entries, software must perform domain- selective (or global) invalidation of IOTLB after the context cache invalidation has completed. Hardware implementations reporting write-buffer flushing requirement (RWBF=1 in Capability register) must implicitly perform a write buffer flush before invalidating the context cache.
62:61	RW	Oh	Uncore	 Context Invalidation Request Granularity (CIRG) Software provides the requested invalidation granularity through this field when setting the ICC field: 00 = Reserved. 01 = Global Invalidation request. 10 = Domain-selective invalidation request. The target domain-id must be specified in the DID field. 11 = Device-selective invalidation request. The target source-id(s) must be specified through the SID and FM fields, and the domain-id (that was programmed in the DID field. Hardware implementations may process an invalidation request by performing invalidation at a coarser granularity than requested. Hardware indicates completion of the invalidation request by clearing the ICC field. At this time, hardware also indicates the granularity at which the actual invalidation was performed through the CAIG field.

B/D/F/ Address Reset Va Access: Size: BIOS Op	Type: Offset: alue: otimal De	0/0 28- 080 RW 64 fault 000)/0/GFXVT ·2Fh 000000000 , RW-V, RO bits 0000000h	BAR 00000h D-V
Bit	Access	Reset Value	RST/ PWR	Description
60:59	RO-V	1h	Uncore	 Context Actual Invalidation Granularity (CAIG) Hardware reports the granularity at which an invalidation request was processed through the CAIG field at the time of reporting invalidation completion (by clearing the ICC field). The following are the encodings for this field: 00 = Reserved. 01 = Global Invalidation performed. This could be in response to a global, domain-selective or device-selective invalidation request. 10 = Domain-selective invalidation performed using the domainid specified by software in the DID field. This could be in response to a domain-selective or device-selective invalidation request. 11 = Device-selective invalidation performed using the source-id
				and domain-id specified by software in the SID and FM fields. This can only be in response to a device-selective invalidation request.
58:34	RO	0h		Reserved (RSVD)
33:32	RW	0h	Uncore	 Function Mask (FM) Software may use the Function Mask to perform device-selective invalidations on behalf of devices supporting PCI Express Phantom Functions. This field specifies which bits of the function number portion (least significant three bits) of the SID field to mask when performing device-selective invalidations. The following encodings are defined for this field: 00 = No bits in the SID field masked. 01 = Mask most significant bit of function number in the SID field. 10 = Mask two most significant bit of function number in the SID field. 11 Mask all three bits of function number in the SID field. The context-entries corresponding to all the source-ids specified through the FM and SID fields must have to the domain-id specified in the DID field.
31:16	RW	0000h	Uncore	Source ID (SID) Indicates the source-id of the device whose corresponding context-entry needs to be selectively invalidated. This field along with the FM field must be programmed by software for device- selective invalidation requests.
15:8	RO	0h		Reserved (RSVD)
7:0	RW	00h	Uncore	Domain-ID (DID) This field indicates the id of the domain whose context-entries need to be selectively invalidated. This field must be programmed by software for both domain-selective and device- selective invalidation requests. The Capability register reports the domain-id width supported by hardware. Software must ensure that the value written to this field is within this limit. Hardware may ignore and not implement bits15:N, where N is the supported domain-id width reported in the Capability register.

2.18.8 FSTS_REG—Fault Status Register

This register indicates the various error status.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/0 34- 000 RO, 32 fault 000	0/0/0/GFXVTBAR 34–37h 00000000h RO, ROS-V, RW1CS 32 bits 00000h		
Bit	Access	Reset Value	RST/ PWR	Description	
31:16	RO	0h		Reserved (RSVD)	
15:8	ROS-V	00h	Powergood	Fault Record Index (FRI) This field is valid only when the PPF field is set. The FRI field indicates the index (from base) of the fault recording register to which the first pending fault was recorded when the PPF field was set by hardware. The value read from this field is undefined when the PPF field is clear.	
7	RO	0h		Reserved (RSVD)	
6	RO	0b	Uncore	Invalidation Time-out Error (ITE) Hardware detected a Device-IOTLB invalidation completion time-out. At this time, a fault event may be generated based on the programming of the Fault Event Control register. Hardware implementations not supporting device Device- IOTLBs implement this bit as RsvdZ.	
5	RO	Оb	Uncore	Invalidation Completion Error (ICE) Hardware received an unexpected or invalid Device-IOTLB invalidation completion. This could be due to either an invalid ITag or invalid source-id in an invalidation completion response. At this time, a fault event may be generated based on the programming of the Fault Event Control register. Hardware implementations not supporting Device-IOTLBs implement this bit as RsvdZ.	
4	RW1CS	Оb	Powergood	Invalidation Queue Error (IQE) Hardware detected an error associated with the invalidation queue. This could be due to either a hardware error while fetching a descriptor from the invalidation queue, or hardware detecting an erroneous or invalid descriptor in the invalidation queue. At this time, a fault event may be generated based on the programming of the Fault Event Control register. Hardware implementations not supporting queued invalidations implement this bit as RsvdZ.	
3	RO	Ob	Uncore	Advanced Pending Fault (APF) When this field is clear, hardware sets this field when the first fault record (at index 0) is written to a fault log. At this time, a fault event is generated based on the programming of the Fault Event Control register. Software writing 1 to this field clears it. Hardware implementations not supporting advanced fault logging implement this bit as RsvdZ.	

B/D/F/Type:0/0/0/GFXVTBAAddress Offset:34–37hReset Value:0000000hAccess:RO, ROS-V, RW1Size:32 bitsBIOS Optimal Default00000h			0/0/GFXVTB/ -37h 000000h . ROS-V, RW1 bits 000h	AR LCS
Bit	Access	Reset Value	RST/ PWR	Description
2	RO	Ob	Uncore	Advanced Fault Overflow (AFO) Hardware sets this field to indicate advanced fault log overflow condition. At this time, a fault event is generated based on the programming of the Fault Event Control register. Software writing 1 to this field clears it. Hardware implementations not supporting advanced fault logging implement this bit as RsvdZ.
1	ROS-V	Ob	Powergood	 Primary Pending Fault (PPF) This field indicates if there are one or more pending faults logged in the fault recording registers. Hardware computes this field as the logical OR of Fault (F) fields across all the fault recording registers of this remapping hardware unit. 0 = No pending faults in any of the fault recording registers 1 = One or more fault recording registers has pending faults. The FRI field is updated by hardware whenever the PPF field is set by hardware. Also, depending on the programming of Fault Event Control register, a fault event is generated when hardware sets this field.
0	RW1CS	0b	Powergood	Primary Fault Overflow (PFO) Hardware sets this field to indicate overflow of fault recording registers. Software writing 1 clears this field. When this field is set, hardware does not record any new faults until software clears this field.

2.18.9 FECTL_REG—Fault Event Control Register

This register specifies the fault event interrupt message control bits.

B/D/F/ Address Reset V Access: Size: BIOS Op	Type: offset: alue: otimal De	0/0 38- 800 RW 32 fault 000	0/0/GFXVT -3Bh 000000h /, RO-V bits 000000h	BAR
Bit	Access	Reset Value	RST/ PWR	Description
31	RW	1b	Uncore	 Interrupt Mask (IM) 0 = No masking of interrupt. When an interrupt condition is detected, hardware issues an interrupt message (using the Fault Event Data and Fault Event Address register values). 1 = This is the value on reset. Software may mask interrupt message generation by setting this field. Hardware is prohibited from sending the interrupt message when this field is set.
				Interrupt Pending (IP) Hardware sets the IP field whenever it detects an interrupt
30	RO-V	Oh	Uncore	 Individe sets the IP field whenever it detects an interrupt condition, which is defined as: When primary fault logging is active, an interrupt condition occurs when hardware records a fault through one of the Fault Recording registers and sets the PPF field in Fault Status register. When advanced fault logging is active, an interrupt condition occurs when hardware records a fault in the first fault record (at index 0) of the current fault log and sets the APF field in the Fault Status register. Hardware detected error associated with the Invalidation Queue, setting the IQE field in the Fault Status register. Hardware detected invalid Device-IOTLB invalidation completion, setting the ICE field in the Fault Status register. Hardware detected Device-IOTLB invalidation completion time-out, setting the ITE field in the Fault Status register. If any of the status fields in the Fault Status register. If any of the status fields in the Fault Status register. If any of the status fields in the Fault Status register was already set at the time of setting any of these fields, it is not treated as a new interrupt condition. The IP field is kept set by hardware while the interrupt message is held pending. The interrupt message could be held pending due to interrupt mask (IM field) being set or other transient hardware conditions. The IP field is cleared by hardware as soon as the interrupt message pending condition is serviced. This could be due to either: Hardware issuing the interrupt message due to either change in the transient hardware condition that caused interrupt message to be held pending, or due to software clearing the IM field. Software servicing all the pending interrupt status fields in the Fault Status register as follows: When nrimary fault logging is active software clearing
				 the Fault (F) field in all the Fault Recording registers with faults, causing the PPF field in Fault Status register to be evaluated as clear. Software clearing other status fields in the Fault Status register by writing back the value read from the respective fields.
29:0	RO RO	Uh	1	Reserved (RSVD)

2.18.10 FEDATA_REG—Fault Event Data Register

B/D/F/Type:0/0/0/GFXVTAddress Offset:3C-3FhReset Value:00000000hAccess:RWSize:32 bits)/0/GFXVT -3Fh)000000h bits	BAR	
Bit	Access	Reset Value	RST/ PWR	Description
31:16	RW	0000h	Uncore	Extended Interrupt Message Data (EIMD): This field is valid only for implementations supporting 32-bit interrupt data fields. Hardware implementations supporting only 16-bit interrupt data may treat this field as RsvdZ.
15:0	RW	0000h	Uncore	Interrupt Message Data (IMD): Data value in the interrupt request.

This register specifies the interrupt message data.

2.18.11 FEADDR_REG—Fault Event Address Register

This register specifies the interrupt message address.

B/D/F/Type:0/0/0/GFXVTAddress Offset:40-43hReset Value:00000000hAccess:RWSize:32 bitsBIOS Optimal Default0h			/0/GFXVT 43h 00000h bits	BAR
Bit	Access	Reset Value	RST/ PWR	Description
31:2	RW	00000000h	Uncore	Message Address (MA) When fault events are enabled, the contents of this register specify the DWord-aligned address (bits 31:2) for the interrupt request.
1:0	RO	0h		Reserved (RSVD)

2.18.12 FEUADDR_REG—Fault Event Upper Address Register

This register specifies the interrupt message upper address.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/0/0/GFXVTB 44–47h 000000000h RW 32 bits		SAR
Bit	Access	Reset Value	RST/ PWR	Description
31:0	RW	00000000h	Uncore	Message upper address (MUA) Hardware implementations supporting Extended Interrupt Mode are required to implement this register. Hardware implementations not supporting Extended Interrupt Mode may treat this field as RsvdZ.

2.18.13 AFLOG_REG—Advanced Fault Log Register

This register specifies the base address of the memory-resident fault-log region. This register is treated as RsvdZ for implementations not supporting advanced translation fault logging (AFL field reported as 0 in the Capability register).

B/D/F/Type:0/0/0/GFXVTAddress Offset:58-5FhReset Value:0000000000Access:ROSize:64 bitsBIOS Optimal Default000h)/0/GFXVT -5Fh)000000000 bits)h	BAR 100000h
Bit	Access	Reset Value	RST/ PWR	Description
63:12	RO	00000000 00000h	Uncore	Fault Log Address (FLA) This field specifies the base of 4 KB aligned fault-log region in system memory. Hardware ignores and does not implement bits 63:HAW, where HAW is the host address width. Software specifies the base address and size of the fault log region through this register, and programs it in hardware through the SFL field in the Global Command register. When implemented, reads of this field return the value that was last programmed to it.
11:9	RO	0h	Uncore	Fault Log Size (FLS) This field specifies the size of the fault log region pointed by the FLA field. The size of the fault log region is $2^X * 4KB$, where X is the value programmed in this register. When implemented, reads of this field return the value that was last programmed to it.
8:0	RO	0h		Reserved (RSVD)

2.18.14 PMEN_REG—Protected Memory Enable Register

This register enables the DMA-protected memory regions setup through the PLMBASE, PLMLIMT, PHMBASE, PHMLIMIT registers. This register is always treated as RO for implementations not supporting protected memory regions (PLMR and PHMR fields reported as Clear in the Capability register).

Protected memory regions may be used by software to securely initialize remapping structures in memory. To avoid impact to legacy BIOS usage of memory, software is recommended to not overlap protected memory regions with any reserved memory regions of the platform reported through the Reserved Memory Region Reporting (RMRR) structures.

B/D/F/ Address Reset Va Access: Size: BIOS Op	Type: ; Offset: alue: ptimal Def	0/0 64- 000 RW 32 fault 000	/0/GFXVT ·67h 100000h , RO-V bits 100000h	BAR
Bit	Access	Reset Value	RST/ PWR	Description
				Enable Protected Memory (EPM)
				This field controls DMA accesses to the protected low-memory and protected high-memory regions.
				0 = Protected memory regions are disabled.
31	RW	Oh	Uncore	 1 = Protected memory regions are enabled. DMA requests accessing protected memory regions are handled as follows: When DMA remapping is not enabled, all DMA requests accessing protected memory regions are blocked. When DMA remapping is enabled: DMA requests processed as pass-through (Translation Type value of 10b in Context-Entry) and accessing the protected memory regions are blocked. DMA requests with translated address (AT=10b) and accessing the protected memory regions are blocked. DMA requests that are subject to address remapping, and accessing the protected memory regions may or may not be blocked by hardware. For such requests, software must not depend on hardware protection of the protected memory regions, and instead program the DMA-remapping page-tables to not allow DMA to protected memory regions.
				DMA requests blocked due to protected memory region violation are not recorded or reported as remapping faults.
				Hardware reports the status of the protected memory enable/disable operation through the PRS field in this register. Hardware implementations supporting DMA draining must drain any in-flight translated DMA requests queued within the Root- Complex before indicating the protected memory region as enabled through the PRS field.
30:1	RO	0h		Reserved (RSVD)
0	RO-V	0h	Uncore	<pre>Protected Region Status (PRS) This field indicates the status of protected memory regions: 0 = Protected memory region(s) disabled. 1 = Protected memory region(s) enabled.</pre>

2.18.15 PLMBASE_REG—Protected Low-Memory Base Register

This register sets up the base address of DMA-protected low-memory region below 4 GB. This register must be set up before enabling protected memory through PMEN REG, and must not be updated when protected memory regions are enabled.

This register is always treated as RO for implementations not supporting protected low memory region (PLMR field reported as Clear in the Capability register).

The alignment of the protected low memory region base depends on the number of reserved bits (N:0) of this register. Software may determine N by writing all 1s to this register, and finding the most significant zero bit position with 0 in the value read back from the register. Bits N:0 of this register are decoded by hardware as all 0s.

Software must setup the protected low memory region below 4 GB.

Software must not modify this register when protected memory regions are enabled (PRS field set in PMEN_REG).

B/D/F/Type:0/0/0Address Offset:68-68Reset Value:00000Access:RWSize:32 bitBIOS Optimal Default00000)/0/GFXVT -6Bh)000000h / bits)00h	BAR
Bit	Access	Reset Value	RST/ PWR	Description
31:20	RW	000h	Uncore	Protected Low-Memory Base (PLMB) This field specifies the base of protected low-memory region in system memory.
19:0	RO	0h		Reserved (RSVD)

2.18.16 PLMLIMIT_REG—Protected Low-Memory Limit Register

This register sets up the limit address of DMA-protected low-memory region below 4 GB. This register must be set up before enabling protected memory through PMEN REG, and must not be updated when protected memory regions are enabled.

This register is always treated as RO for implementations not supporting protected low memory region (PLMR field reported as Clear in the Capability register).

The alignment of the protected low memory region limit depends on the number of reserved bits (N:0) of this register. Software may determine N by writing all 1s to this register, and finding most significant zero bit position with 0 in the value read back from the register. Bits N:0 of the limit register is decoded by hardware as all 1s.

The Protected low-memory base and limit registers functions as follows:

- Programming the protected low-memory base and limit registers with the same value in bits 31)N+1) specifies a protected low-memory region of size 2^(N+1) bytes.
- Programming the protected low-memory limit register with a value less than the protected low-memory base register disables the protected low-memory region.

Software must not modify this register when protected memory regions are enabled (PRS field set in PMEN_REG).

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default)/0/GFXVT -6Fh)000000h bits)000h	BAR
Bit	Access	Reset Value	RST/ PWR	Description
31:20	RW	000h	Uncore	Protected Low-Memory Limit (PLML) This register specifies the last host physical address of the DMA- protected low-memory region in system memory.
19:0	RO	0h		Reserved (RSVD)

2.18.17 PHMBASE_REG—Protected High-Memory Base Register

This register sets up the base address of DMA-protected high-memory region. This register must be set up before enabling protected memory through PMEN_REG, and must not be updated when protected memory regions are enabled.

This register is always treated as RO for implementations not supporting protected high memory region (PHMR field reported as Clear in the Capability register).

The alignment of the protected high memory region base depends on the number of reserved bits (N:0) of this register. Software may determine N by writing all 1s to this register, and finding most significant zero bit position below host address width (HAW) in the value read back from the register. Bits N:0 of this register are decoded by hardware as all 0s.

Software may setup the protected high memory region either above or below 4 GB.

Software must not modify this register when protected memory regions are enabled (PRS field set in PMEN_REG).

B/D/F/Type:0Address Offset:7Reset Value:0Access:RSize:6BIOS Optimal Default0			0/0/GFXVT -77h 0000000000 bits 000000000	BAR 1000000h 10h
Bit	Access	Reset Value	RST/ PWR	Description
63:39	RO	0h		Reserved (RSVD)
38:20	RW	00000h	Uncore	Protected High-Memory Base (PHMB) This register specifies the base of protected (high) memory region in system memory. Hardware ignores, and does not implement, bits 63:HAW, where HAW is the host address width.
19:0	RO	0h		Reserved (RSVD)

2.18.18 PHMLIMIT_REG—Protected High-Memory Limit Register

This register sets up the limit address of DMA-protected high-memory region. This register must be set up before enabling protected memory through PMEN_REG, and must not be updated when protected memory regions are enabled.

This register is always treated as RO for implementations not supporting protected high memory region (PHMR field reported as Clear in the Capability register).

The alignment of the protected high memory region limit depends on the number of reserved bits (N:0) of this register. Software may determine the value of N by writing all 1s to this register, and finding most significant zero bit position below host address width (HAW) in the value read back from the register. Bits N:0 of the limit register is decoded by hardware as all 1s.

The protected high-memory base & limit registers functions as follows.

- Programming the protected low-memory base and limit registers with the same value in bits HAW:(N+1) specifies a protected low-memory region of size 2^(N+1) bytes.
- Programming the protected high-memory limit register with a value less than the protected high-memory base register disables the protected high-memory region.

Software must not modify this register when protected memory regions are enabled (PRS field set in PMEN_REG).

B/D/F/Type:OAddress Offset:DReset Value:OAccess:DSize:OBIOS Optimal DefaultO)/0/GFXVT -7Fh 0000000000 bits 000000000	BAR 00000h 0h
Bit	Access	Reset Value	RST/ PWR	Description
63:39	RO	0h		Reserved (RSVD)
38:20	RW	00000h	Uncore	Protected High-Memory Limit (PHML) This register specifies the last host physical address of the DMA- protected high-memory region in system memory. Hardware ignores and does not implement bits 63:HAW, where HAW is the host address width.
19:0	RO	0h		Reserved (RSVD)

2.18.19 IQH_REG—Invalidation Queue Head Register

This register indicates the invalidation queue head. This register is treated as RsvdZ by implementations reporting Queued Invalidation (QI) as not supported in the Extended Capability register.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default)/0/GFXVT -87h 000000000 -V bits 000000000	BAR 00000h 00h
Bit	Access	Reset Value	RST/ PWR	Description
63:19	RO	0h		Reserved (RSVD)
18:4	RO-V	0000h	Uncore	Queue Head (QH): Specifies the offset (128-bit aligned) to the invalidation queue for the command that will be fetched next by hardware. Hardware resets this field to 0 whenever the queued invalidation is disabled (QIES field Clear in the Global Status register).
3:0	RO	0h		Reserved (RSVD)

2.18.20 IQT_REG—Invalidation Queue Tail Register

This register indicates the invalidation tail head. This register is treated as RsvdZ by implementations reporting Queued Invalidation (QI) as not supported in the Extended Capability register.

B/D/F/Type:0/0/0/Address Offset:88-8FhReset Value:000000Access:RW-LSize:64 bitsBIOS Optimal Default000000)/0/GFXVT -8Fh 000000000 -L bits 000000000	BAR 00000h 00h
Bit	Access	Reset Value	RST/ PWR	Description
63:19	RO	0h		Reserved (RSVD)
18:4	RW-L	0000h	Uncore	Queue Tail (QT) This field specifies the offset (128-bit aligned) to the invalidation queue for the command that will be written next by software.
3:0	RO	0h		Reserved (RSVD)

2.18.21 IQA_REG—Invalidation Queue Address Register

This register configures the base address and size of the invalidation queue. This register is treated as RsvdZ by implementations reporting Queued Invalidation (QI) as not supported in the Extended Capability register.

B/D/F/Type: 0/0/0/GF> Address Offset: 90-97h Reset Value: 00000000 Access: RW-L Size: 64 bits BIOS Optimal Default 000000000		9/0/GFXVT 97h 900000000 -L bits 9000000h	BAR 00000h	
Bit	Access	Reset Value	RST/ PWR	Description
63:39	RO	0h		Reserved (RSVD)
38:12	RW-L	0000000h	Uncore	Invalidation Queue Base Address (IQA) This field points to the base of 4 KB aligned invalidation request queue. Hardware ignores and does not implement bits 63:HAW, where HAW is the host address width. Reads of this field return the value that was last programmed to it.
11:3	RO	0h		Reserved (RSVD)
2:0	RW-L	0h	Uncore	Queue Size (QS) This field specifies the size of the invalidation request queue. A value of X in this field indicates an invalidation request queue of $(2^X) 4$ KB pages. The number of entries in the invalidation queue is $2^{(X + 8)}$.

2.18.22 ICS_REG—Invalidation Completion Status Register

This register reports completion status of invalidation wait descriptor with Interrupt Flag (IF) set.

This register is treated as RsvdZ by implementations reporting Queued Invalidation (QI) as not supported in the Extended Capability register.

B/D/F/Type:0/0/0/GFXVTB/Address Offset:9C-9FhReset Value:00000000hAccess:RW1CSSize:32 bitsBIOS Optimal Default0000000h			970/GFXVTB 97h 000000h 1CS bits 000000h	AR
Bit	Access	Reset Value	RST/ PWR	Description
31:1	RO	0h		Reserved (RSVD)
0	RW1CS	0b	Powergood	Invalidation Wait Descriptor Complete (IWC) This bit indicates completion of Invalidation Wait Descriptor with Interrupt Flag (IF) field set. Hardware implementations not supporting queued invalidations implement this field as RsvdZ.

2.18.23 IECTL_REG—Invalidation Event Control Register

This register specifies the invalidation event interrupt control bits.

This register is treated as RsvdZ by implementations reporting Queued Invalidation (QI) as not supported in the Extended Capability register.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/0 A0- 800 RW 32 fault 000)/0/GFXVT -A3h 000000h -L, RO-V bits 000000h	BAR
Bit	Access	Reset Value	RST/ PWR	Description
31	RW-L	1b	Uncore	 Interrupt Mask (IM) 0 = No masking of interrupt. When an invalidation event condition is detected, hardware issues an interrupt message (using the Invalidation Event Data & Invalidation Event Address register values). 1 = This is the value on reset. Software may mask interrupt message generation by setting this field. Hardware is prohibited from sending the interrupt message when this field is set.
30	RO-V	Ob	Uncore	 Interrupt Pending (IP) Hardware sets the IP field whenever it detects an interrupt condition. Interrupt condition is defined as: An Invalidation Wait Descriptor with Interrupt Flag (IF) field set completed, setting the IWC field in the Invalidation Completion Status register. If the IWC field in the Invalidation Completion Status register was already set at the time of setting this field, it is not treated as a new interrupt condition. The IP field is kept set by hardware while the interrupt message is held pending. The interrupt message could be held pending due to interrupt mask (IM field) being set, or due to other transient hardware conditions. The IP field is cleared by hardware as soon as the interrupt message pending condition is serviced. This could be due to either: Hardware issuing the interrupt message due to either change in the transient hardware condition that caused interrupt message to be held pending or due to software clearing the IM field. Software servicing the IWC field in the Invalidation Completion Status register.
29:0	RO	0h		Reserved (RSVD)

2.18.24 IEDATA_REG—Invalidation Event Data Register

This register specifies the Invalidation Event interrupt message data.

This register is treated as RsvdZ by implementations reporting Queued Invalidation (QI) as not supported in the Extended Capability register.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/0/0/GFXVT A4-A7h 00000000h RW-L 32 bits		BAR
Bit	Access	Reset Value	RST/ PWR	Description
31:16	RW-L	0000h	Uncore	Extended Interrupt Message Data (EIMD) This field is valid only for implementations supporting 32-bit interrupt data fields. Hardware implementations supporting only 16-bit interrupt data treat this field as Rsvd.
15:0	RW-L	0000h	Uncore	Interrupt Message data (IMD) Data value in the interrupt request.

2.18.25 IEADDR_REG—Invalidation Event Address Register

This register specifies the Invalidation Event Interrupt message address.

This register is treated as RsvdZ by implementations reporting Queued Invalidation (QI) as not supported in the Extended Capability register.

B/D/F/Type:0/0/0/GAddress Offset:A8-ABhReset Value:0000000Access:RW-LSize:32 bitsBIOS Optimal Default0h)/0/GFXVT -ABh 000000h -L bits	BAR
Bit	Access	Reset Value	RST/ PWR	Description
31:2	RW-L	00000000 h	Uncore	Message address (MA) When fault events are enabled, the contents of this register specify the DWord-aligned address (bits 31:2) for the interrupt request.
1:0	RO	0h		Reserved (RSVD)

2.18.26 IEUADDR_REG—Invalidation Event Upper Address Register

This register specifies the Invalidation Event interrupt message upper address.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/0/0/GFXVTI AC-AFh 000000000h RW-L 32 bits		BAR
Bit	Access	Reset Value	RST/ PWR	Description
31:0	RW-L	00000000h	Uncore	Message Upper Address (MUA) Hardware implementations supporting Queued Invalidations and Extended Interrupt Mode are required to implement this register. Hardware implementations not supporting Queued Invalidations or Extended Interrupt Mode may treat this field as RsvdZ.

2.18.27 IRTA_REG—Interrupt Remapping Table Address Register

This register provides the base address of Interrupt remapping table. This register is treated as RsvdZ by implementations reporting Interrupt Remapping (IR) as not supported in the Extended Capability register.

B/D/F/Type:0/0Address Offset:B8-Reset Value:000Access:RWSize:64BIOS Optimal Default000)/0/GFXVT -BFh 000000000 -L bits 000000h	BAR 00000h	
Bit	Access	Reset Value	RST/ PWR	Description
63:39	RO	0h		Reserved (RSVD)
38:12	RW-L	0000000h	Uncore	Interrupt Remapping Table Address (IRTA) This field points to the base of 4 KB aligned interrupt remapping table. Hardware ignores and does not implement bits 63:HAW, where HAW is the host address width. Reads of this field returns value that was last programmed to it.
11:4	RO	0h		Reserved (RSVD)
3:0	RW-L	0h	Uncore	Size (S) This field specifies the size of the interrupt remapping table. The number of entries in the interrupt remapping table is $2^{(X+1)}$, where X is the value programmed in this field.

2.18.28 IVA_REG—Invalidate Address Register

This register provides the DMA address whose corresponding IOTLB entry needs to be invalidated through the corresponding IOTLB Invalidate register. This register is a write-only register.

B/D/F/Type:0/0/0/GFXVTAddress Offset:100-107hReset Value:00000000000Access:RWSize:64 bitsBIOS Optimal Default00000000h		0/0/GFXVT 0–107h 000000000 / bits 000000h	BAR 000000h	
Bit	Access	Reset Value	RST/ PWR	Description
63:39	RO	0h		Reserved (RSVD)
38:12	RW	0000000h	Uncore	Address (ADDR) Software provides the DMA address that needs to be page- selectively invalidated. To make a page-selective invalidation request to hardware, software must first write the appropriate fields in this register, and then issue the appropriate page- selective invalidate command through the IOTLB_REG. Hardware ignores bits 63: N, where N is the maximum guest address width (MGAW) supported.
11:7	RO	0h		Reserved (RSVD)
6	RW	Oh	Uncore	 Invalidation Hint (IH) The field provides hint to hardware about preserving or flushing the non-leaf (page-directory) entries that may be cached in hardware: 0 = Software may have modified both leaf and non-leaf page-table entries corresponding to mappings specified in the ADDR and AM fields. On a page-selective invalidation request, hardware must flush both the cached leaf and non-leaf page-table entries corresponding to the mappings specified by ADDR and AM fields. 1 = Software has not modified any non-leaf page-table entries corresponding to mappings specified in the ADDR and AM fields. 1 = Software has not modified any non-leaf page-table entries corresponding to mappings specified in the ADDR and AM fields. On a page-selective invalidation request, hardware may preserve the cached non-leaf page-table entries corresponding to mappings specified by ADDR and AM fields.
5:0	RW	00h	Uncore	Address Mask (AM)The value in this field specifies the number of low order bits of the ADDR field that must be masked for the invalidation operation. This field enables software to request invalidation of contiguous mappings for size-aligned regions. For example:MaskADDR bitsPagesValuemaskedinvalidated0None11122213:124314:128415:1216When invalidating mappings for super-pages, software must specify the appropriate mask value. For example, when invalidating mapping for a 2 MB page, software must specify an address mask value of at least 9.Hardware implementations report the maximum supported mask value through the Capability register.

2.18.29 IOTLB_REG—IOTLB Invalidate Register

This register invalidates IOTLB. The act of writing the upper byte of the IOTLB_REG with IVT field set causes the hardware to perform the IOTLB invalidation.

B/D/F/Type:0/0/0/GFXVTAddress Offset:108-10FhReset Value:0200000000Access:RO-V, RW, RWSize:64 bitsBIOS Optimal Default0000000000)/0/GFXVT 3–10Fh 000000000 -V, RW, RW bits 000000000	BAR 00000h /-V 00h
Bit	Access	Reset Value	RST/ PWR	Description
				Invalidate IOTLB (IVT) Software requests IOTLB invalidation by setting this field. Software must also set the requested invalidation granularity by programming the IIRG field.
63	RW-V	0h	Uncore	Hardware clears the IVT field to indicate the invalidation request is complete. Hardware also indicates the granularity at which the invalidation operation was performed through the IAIG field. Software must not submit another invalidation request through this register while the IVT field is set, nor update the associated Invalidate Address register.
				Software must not submit IOTLB invalidation requests when there is a context-cache invalidation request pending at this remapping hardware unit. Hardware implementations reporting write-buffer flushing
				requirement (RWBF=1 in Capability register) must implicitly perform a write buffer flushing before invalidating the IOTLB.
62:62	RO	0h		Reserved (RSVD)
61:60	RW	Oh	Uncore	 IOTLB Invalidation Request Granularity (IIRG) When requesting hardware to invalidate the IOTLB (by setting the IVT field), software writes the requested invalidation granularity through this field. The following are the encodings for the field. 00 = Reserved. 01 = Global invalidation request. 10 = Domain-selective invalidation request. The target domainid must be specified in the DID field. 11 = Page-selective invalidation request. The target address, mask and invalidation hint must be specified in the Invalidate Address register, and the domain-id must be provided in the DID field. Hardware implementations may process an invalidation request by performing invalidation at a coarser granularity than requested. Hardware indicates completion of the invalidation request by clearing the IVT field. At this time, the granularity at which actual invalidation was performed is reported through the IAIG field
59:59	RO	0h		Reserved (RSVD)

B/D/F/ Address Reset V Access: Size: BIOS Op	Type: Offset: alue: otimal De	0/0 108 020 RO- 64 fault 000	0/0/GFXVT 3-10Fh 000000000 -V, RW, RW bits 0000000000	BAR 00000h /-V 00h
Bit	Access	Reset Value	RST/ PWR	Description
58:57	RO-V	1h	Uncore	 IOTLB Actual Invalidation Granularity (IAIG) Hardware reports the granularity at which an invalidation request was processed through this field when reporting invalidation completion (by clearing the IVT field). The following are the encodings for this field. 00 = Reserved. This indicates hardware detected an incorrect invalidation request and ignored the request. Examples of incorrect invalidation requests include detecting an unsupported address mask value in Invalidate Address register for page-selective invalidation requests. 01 = Global Invalidation performed. This could be in response to a global, domain-selective, or page-selective invalidation request. 10 = Domain-selective invalidation performed using the domain-id specified by software in the DID field. This could be in response to a domain-selective or a page-selective invalidation request. 11 = Domain-page-selective invalidation performed using the address, mask and hint specified by software in the Invalidate Address register and domain-id specified in DID field. This can be in response to a page-selective invalidation performed using the address, mask and hint specified by software in the Invalidate Address register and domain-id specified in DID field. This can be in response to a page-selective invalidation performed using the address register and domain-id specified in DID field. This can be in response to a page-selective invalidation request.
56:50	RO	0h		Reserved (RSVD)
49	RW	Ob	Uncore	 Drain Reads (DR) This field is ignored by hardware if the DRD field is reported as clear in the Capability register. When the DRD field is reported as set in the Capability register, the following encodings are supported for this field: 0 = Hardware may complete the IOTLB invalidation without draining any translated DMA read requests. 1 = Hardware must drain DMA read requests.
48	RW	Ob	Uncore	 Drain Writes (DW) This field is ignored by hardware if the DWD field is reported as Clear in the Capability register. When the DWD field is reported as set in the Capability register, the following encodings are supported for this field: 0 = Hardware may complete the IOTLB invalidation without draining DMA write requests. 1 = Hardware must drain relevant translated DMA write requests.
47:40	RO	0h		Reserved (RSVD)
39:32	RW	00h	Uncore	Domain-ID (DID) This field indicates the ID of the domain whose IOTLB entries need to be selectively invalidated. This field must be programmed by software for domain-selective and page-selective invalidation requests. The Capability register reports the domain-id width supported by hardware. Software must ensure that the value written to this field is within this limit. Hardware ignores and not implements bits 47:(32+N), where N is the supported domain-id width reported in the Capability register.
31:0	RO	0h		Reserved (RSVD)

2.18.30 FRCDL_REG—Fault Recording Low Register

This register records fault information when primary fault logging is active. Hardware reports the number and location of fault recording registers through the Capability register. This register is relevant only for primary fault logging.

This register is sticky and can be cleared only through power good reset or by software clearing the RW1C fields by writing a 1.

B/D/F/Type:0/Address Offset:20Reset Value:00Access:RSize:64BIOS Optimal Default00		0/0 200 ROS 64 fault 000)/0/0/GFXVTBAR 200-207h 000000000000000h ROS-V 54 bits 000000000000000h		
Bit	Access	Reset Value	RST/ PWR	Description	
63:12	ROS-V	00000000 00000h	Powergood	Fault Info (FI) When the Fault Reason (FR) field indicates one of the DMA- remapping fault conditions, bits 63:12 of this field contain the page address in the faulted DMA request. Hardware treats bits 63:N as reserved (0), where N is the maximum guest address width (MGAW) supported. When the Fault Reason (FR) field indicates one of the interrupt- remapping fault conditions, bits 63:48 of this field indicate the interrupt_index computed for the faulted interrupt request, and bits 47:12 are cleared. This field is relevant only when the F field is set.	
11:0	RO	0h		Reserved (RSVD)	

2.18.31 FRCDH_REG—Fault Recording High Register

This register records fault information when primary fault logging is active. Hardware reports the number and location of fault recording registers through the Capability register. This register is relevant only for primary fault logging.

This register is sticky and can be cleared only through power good reset or by software clearing the RW1C fields by writing a 1.

B/D/F/Type:0/0/0/GFXVTAddress Offset:208-20FhReset Value:00000000000Access:RO, RW1CS, RSize:64 bitsBIOS Optimal Default00000000000				NR 000h S-V 000h
Bit	Access	Reset Value	RST/ PWR	Description
63	RW1CS	0b	Powergood	Fault (F) Hardware sets this field to indicate a fault is logged in this Fault Recording register. The F field is set by hardware after the details of the fault is recorded in other fields. When this field is set, hardware may collapse additional faults from the same source-id (SID). Software writes the value read from this field to clear it.
62	ROS-V	0b	Powergood	Type (T)Type of the faulted request:0 = Write request1 = Read request or AtomicOp requestThis field is relevant only when the F field is set, and when the fault reason (FR) indicates one of the DMA-remapping fault conditions.
61:60	RO	00Ь	Uncore	Address Type (AT) This field captures the AT field from the faulted DMA request. Hardware implementations not supporting Device-IOTLBs (DI field Clear in Extended Capability register) treat this field as RsvdZ. When supported, this field is valid only when the F field is set, and when the fault reason (FR) indicates one of the DMA- remapping fault conditions.
59:40	RO	0h		Reserved (RSVD)
39:32	ROS-V	00h	Powergood	Fault Reason (FR) This field provides the reason for the fault. This field is relevant only when the F field is set.
31:16	RO	0h		Reserved (RSVD)
15:0	ROS-V	000000000 0000000b	Powergood	Source Identifier (SID) This field provides the Requester-id associated with the fault condition. This field is relevant only when the F field is set.

2.18.32 VTPOLICY-DMA Remap Engine Policy Control Register

This register contains all the policy bits related to the DMA remap engine.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default			0/0/GFXVT)-FF3h)000000h '-L, RO, RO bits)0h	BAR -KFW, RW-KL
Bit	Access	Reset Value	RST/ PWR	Description
31	RW-KL	0b	Uncore	DMA Remap Engine Policy Lock-Down (DMAR_LCKDN) This register bit protects all the DMA remap engine specific policy configuration registers. Once this bit is set by software all the DMA remap engine registers within the range F00h to FFCh will be read-only. This bit can only be clear through platform reset.
30:0	RO	0h		Reserved (RSVD)

2.19 PCU MCHBAR Registers

Table 2-22. PCU MCHBAR Register Address Map

Address Offset	Register Symbol	Register Name	Reset Value	Access
0-587Fh	RSVD	Reserved	_	_
5880-5883h	MEM_TRML_ESTI MATION_CONFIG	Memory Thermal Estimation Configuration	CA9171E7h	RW
5884-5887h	RSVD	Reserved	00000000h	RW
5888-588Bh	MEM_TRML_THRE SHOLDS_CONFIG	Memory Thermal Thresholds Configuration	00E4DAD0h	RW
588C-589Fh	RSVD	Reserved	_	_
58A0-58A3h	MEM_TRML_STAT US_REPORT	Memory Thermal Status Report	00000000h	RO-V
58A4-58A7h	MEM_TRML_TEMP ERATURE_REPORT	Memory Thermal Temperature Report	00000000h	RO-V
58A8-58ABh	MEM_TRML_INTER RUPT	Memory Thermal Interrupt	00000000h	RW
58AC-5947h	RSVD	Reserved	_	_
5948-594Bh	GT_PERF_STATUS	GT Performance Status	00000000h	RO-V
594C-5993h	RSVD	Reserved	-	—
5994-5997h	RP_STATE_LIMITS	RP-State Limitations	000000FFh	RW
5998-599Bh	RP_STATE_CAP	RP State Capability	00000000h	RO-FW
599C-5C1Fh	RSVD	Reserved	-	—
5C20-5C23h	PCU_MMIO_FREQ _CLIPPING_CAUS E_STATUS	PCU MMIO Frequency Clipping Cause Status	00000000h	RW
5C24-5C27h	PCU_MMIO_FREQ _CLIPPING_CAUS E_LOG	PCU MMIO Frequency Clipping Cause Log	00000000h	RW
5C28-5D0Fh	RSVD	Reserved	_	_
5D10-5D17h	SSKPD	Sticky Scratchpad Data	00000000000 00000h	RWS, RW
5D18-5F03h	RSVD	Reserved	—	—

2.19.1 MEM_TRML_ESTIMATION_CONFIG—Memory Thermal Estimation Configuration Register

This register contains configuration regarding VTS temperature estimation calculations that are done by PCODE.

B/D/F/Type:0/0/0/MCHEAddress Offset:5880-5883hReset Value:CA9171E7hAccess:RWSize:32 bitsBIOS Optimal DefaultCA9171E7h)/0/MCHB/ 80–5883h 9171E7h bits 9171E7h	AR PCU
Bit	Access	Reset Value	RST/ PWR	Description
31:22	RW	10Eh	Uncore	VTS multiplier (VTS_MULTIPLIER) The VTS multiplier serves as a multiplier for the translation of the memory BW to temperature. The units are given in 1 / power(2,44).
21:12	RW	0C8h	Uncore	VTS time constant (VTS_TIME_CONSTANT) This factor is relevant only for BW based temperature estimation. It is equal to "1 minus alpha". The value of the time constant (1 – alpha) is determined by VTS_TIME_CONSTANT / power(2,25) per 1 mSec.
11	RO	0h		Reserved (RSVD)
10:4	RW	32h	Uncore	VTS offset adder (VTS_OFFSET) The offset is intended to provide a temperature proxy offset, so the option of having a fixed adder to VTS output is available.
3	RO	0h		Reserved (RSVD)
2	RW	1b	Uncore	Disable EXTTS# (DISABLE_EXTTS) When set, the processor will ignore the EXTTS# signal status that it receives from the PCH through PM_SYNC messaging. 0 = Enable 1 = Disable
1	RW	0b	Uncore	Disable virtual Temperature Sensor (DISABLE_VTS) When set, the processor will ignore the VTS. 0 = Enable 1 = Disable
0	RW	0b	Uncore	Disable PECI Injected Temperature (DISABLE_PECI_INJECT_TEMP) When set, the processor will ignore any DRAM temperature written to it over the PECI bus. 0 = Enable 1 = Disable

2.19.2 MEM_TRML_THRESHOLDS_CONFIG—Memory Thermal Thresholds Configuration Register

This register is used to describe the thresholds of the memory thermal management in the memory controller. The warm threshold defines when self-refresh is at double data rate. Throttling can also be applied at this threshold based on the configuration in the memory controller. The hot threshold defines the threshold at which severe thermal throttling will occur. Self Refresh is also at double rate during a hot condition.

B/D/F/Type:0/0Address Offset:58Reset Value:000Access:RWSize:32BIOS Optimal Default000)/0/MCHB/ 88–588Bh 4DAD0h bits DAD0h	AR PCU	
Bit	Access	Reset Value	RST/ PWR	Description
31:16	RO	0h		Reserved (RSVD)
15	RW	1b	Uncore	Hot Threshold Enable (HOT_THRESHOLD_ENABLE) This bit must be set to allow the hot threshold.
14:8	RW	1010101b	Uncore	Hot Threshold (HOT_THRESHOLD) This threshold defines what is the acceptable temperature limitation. When this threshold is crossed, severe throttling takes place. The self refresh is also at double rate.
7	RW	1b	Uncore	Warm Threshold Enable (WARM_THRESHOLD_ENABLE) This bit must be set to allow the warm threshold.
6:0	RW	1010000b	Uncore	Warm Threshold (WARM_THRESHOLD) The warm temperature threshold defines when the self refresh is at double rate. Throttling can also be applied at this threshold based on the configuration in the memory controller.

2.19.3 MEM_TRML_STATUS_REPORT—Memory Thermal Status Report Register

This register reports the thermal status of DRAM.

B/D/F/Type:0/0/0/MCHBJAddress Offset:58A0-58A3hReset Value:00000000hAccess:RO-VSize:32 bitsBIOS Optimal Default00h)/0/MCHB/ A0–58A3h 000000h -V bits 1	AR PCU	
Bit	Access	Reset Value	RST/ PWR	Description
31:25	RO	0h		Reserved (RSVD)
24	RO-V	0b	Uncore	Double Self refresh (DSR) 0 = Normal self refresh 1 = Double self refresh
23:16	RO-V	00h	Uncore	Reserved (RSVD)
15:8	RO-V	00h	Uncore	Channel 1 Status (CHANNEL1_STATUS) The format is for each channel and is defined as follows: 00 = Cold 01 = Warm 11 = Hot Bits 8:9: Rank 0 Channel 1 Bits 10:11: Rank 1 Channel 1 Bits 12:13: Rank 2 Channel 1 Bits 14:15: Rank 3 Channel 1
7:0	RO-V	00h	Uncore	Channel O Status (CHANNELO_STATUS) The format is for each channel and is defined as follows: 00 = Cold 01 = Warm 11 = Hot Bits 0:1: Rank 0 Channel 0 Bits 2:3: Rank 1 Channel 0 Bits 4:5: Rank 2 Channel 0 Bits 6:7: Rank 3 Channel 0

2.19.4 MEM_TRML_TEMPERATURE_REPORT—Memory Thermal Temperature Report Register

This register is used to report the thermal status of the memory. The channel max temperature field is used to report the maximal temperature of all ranks.

B/D/F/Type:0/0/0/MCAddress Offset:58A4-58AReset Value:00000000Access:RO-VSize:32 bitsBIOS Optimal Default00h)/0/MCHBA A4-58A7h 000000h -V bits 1	AR PCU
Bit	Access	Reset Value	RST/ PWR	Description
31:24	RO	0h		Reserved (RSVD)
23:16	RO-V	00h	Uncore	Reserved (RSVD)
15:8	RO-V	00h	Uncore	Channel 1 Maximum Temperature (CHANNEL1_MAX_TEMPERATURE) Temperature in Degrees C.
7:0	RO-V	00h	Uncore	Channel 0 Maximum Temperature (CHANNEL0_MAX_TEMPERATURE) Temperature in Degrees C.

2.19.5 MEM_TRML_INTERRUPT—Memory Thermal Interrupt Register

Hardware uses this information to determine whether a memory thermal interrupt is to be generated or not.

B/D/F/Type:0/0Address Offset:58AReset Value:000Access:RWSize:32BIOS Optimal Default000)/0/MCHB/ A8-58ABh)000000h bits)00000h	AR PCU	
Bit	Access	Reset Value	RST/ PWR	Description
31:5	RO	0h		Reserved (RSVD)
4	RW	0b		Reserved (RSVD)
3	RO	0h		Reserved (RSVD)
2	RW	0b	Uncore	Hot Threshold Interrupt Enable (HOT_THRESHOLD_INT_ENABLE) This bit controls the generation of a thermal interrupt whenever the Hot Threshold temperature is crossed.
1	RO	0h		Reserved (RSVD)
0	RW	0b	Uncore	Warm Threshold Interrupt Enable (WARM_THRESHOLD_INT_ENABLE) This bit controls the generation of a thermal interrupt whenever the Warm Threshold temperature is crossed.

2.19.6 GT_PERF_STATUS—GT Performance Status Register

This register provides the P-state encoding for the Secondary Power Plane's current PLL frequency and the current VID.

B/D/F/Type:0/0/0/MCHBAAddress Offset:5948-594BhReset Value:0000000hAccess:RO-VSize:32 bitsBIOS Optimal Default0000h)/0/MCHB/ 18–594Bh)000000h -V bits)0h	AR PCU
Bit	Access	Reset Value	RST/ PWR	Description
31:16	RO	0h		Reserved (RSVD)
15:8	RO-V	00h	Uncore	RP-State Ratio (RP_STATE_RATIO) This field provides the ratio of the current RP-state.
7:0	RO-V	00h		Reserved (RSVD)

2.19.7 RP_STATE_LIMITS-RP-State Limitations Register

This register allows software to limit the maximum base frequency for the Integrated Graphics Engine (GT) allowed during run-time.

B/D/F/Type:0/0/0/MCHB,Address Offset:5994–5997hReset Value:000000FFhAccess:RWSize:32 bitsBIOS Optimal Default000000h)/0/MCHB/ 94–5997h 9000FFh bits 9000h	AR PCU
Bit	Access	Reset Value	RST/ PWR	Description
31:8	RO	0h		Reserved (RSVD)
7:0	RW	FFh	Uncore	RP-State Limit (RPSTT_LIM) This field indicates the maximum base frequency limit for the Integrated Graphics Engine (GT) allowed during run-time.

2.19.8 RP_STATE_CAP-RP State Capability Register

This register contains the maximum base frequency capability for the Integrated Graphics Engine (GT).

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/0 599 000 RO- 32 fault 00f)/0/MCHB/ 98–599Bh 900000h -FW bits	AR PCU
Bit	Access	Reset RST/ Value PWR		Description
31:24	RO	0h		Reserved (RSVD)
23:16	RO-FW	00h	Uncore	RPN Capability (RPN_CAP) This field indicates the maximum RPN base frequency capability for the Integrated Graphics Engine (GT). Values are in units of 100 MHz.
15:8	RO-FW	00h	Uncore	RP1 Capability (RP1_CAP): This field indicates the maximum RP1 base frequency capability for the Integrated Graphics Engine (GT). Values are in units of 100 MHz.
7:0	RO-FW	00h	Uncore	RP0 Capability (RP0_CAP): This field indicates the maximum RP0 base frequency capability for the Integrated Graphics Engine (GT). Values are in units of 100 MHz.

2.19.9 PCU_MMIO_FREQ_CLIPPING_CAUSE_STATUS Register

This register provides the status of the frequency clipping cause in MMIO for both Power plane 0 (IA) and Power plane 1 (GT)

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/0/0/MCHBA 5C20-5C23h 00000000h RW 32 bits		AR PCU	
Bit	Access	Reset Value	RST/ PWR	Description	
31	RW	00000000h	Uncore	pp1_clipped Set if the PP1 (GT) frequency requested was clipped.	
30	RW	00000000h		Reserved (RSVD)	
29	RW	00000000h	Uncore	pp1_clipped_non_turbo Set if the PP1 (GT) frequency requested was clipped, but current frequency is lower than RP1 (MAX_NON_TURBO).	
28:25	RW	00000000h		Reserved (RSVD)	
24	RW	00000000h	Uncore	pp1_clipped_edp Set if the PP1 (GT) frequency requested was clipped by EDP limit (Vmax, Iccmax, Reliability, and so on).	
23	RW	00000000h		Reserved (RSVD)	
22	RW	00000000h	Uncore	pp1_clipped_hot_vr Set if the PP1 (GT) frequency requested was clipped by HOT indication from VR on SVID.	
21	RW	00000000h	Uncore	p1_clipped_pl2 Set if the PP1 (GT) frequency requested was clipped by PL2 (POWER_LIMIT_2) power limiting algorithm.	

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/0/0/MCHBAB 5C20-5C23h 00000000h RW 32 bits		R PCU	
Bit	Access	Reset Value	RST/ PWR	Description	
20:19	RW	00000000h		Reserved (RSVD)	
18	RW	00000000h	Uncore	pp1_clipped_pl1 Set if the PP1 (GT) frequency requested was clipped by PL1 (POWER_LIMIT_1) power limiting algorithm.	
17	RW	00000000h	Uncore	pp1_clipped_thermals Set if the PP1 (GT) frequency requested was clipped by internal Thermal Throttling algorithm.	
16	RW	00000000h	Uncore	pp1_clipped_ext_prochot Set if the PP1 (GT) frequency requested was clipped by external PROCHOT indication.	
15	RW	00000000h	Uncore	pp0_clipped Set if the PP0 (IA) frequency requested by the operating system was clipped.	
14	RW	00000000h	Uncore	pp0_clipped_n_core_turbo Set if the PP0 (IA) frequency requested by the operating system was clipped, but current frequency is lower than MAX_TURBO[n- cores].	
13	RW	00000000h	Uncore	pp0_clipped_non_turbo Set if the PP0 (IA) frequency requested by the operating system was clipped, but current frequency is lower than MAX_NON_TURBO.	
12:9	RW	00000000h		Reserved (RSVD)	
8	RW	00000000h	Uncore	<pre>pp0_clipped_edp Set if the PP0 (IA) frequency requested by the operating system was clipped by EDP limit (Vmax, Iccmax, Reliability, and so on)</pre>	
7	RW	00000000h	Uncore	pp0_clipped_mct Set if the PP0 (IA) frequency requested by the operating system was clipped by Multi Core Turbo demotion algorithm.	
6	RW	00000000h	Uncore	pp0_clipped_hot_vr Set if the PP0 (IA) frequency requested by the operating system was clipped by HOT indication from VR on SVID.	
5	RW	00000000h	Uncore	pp0_clipped_pl2 Set if the PP0 (IA) frequency requested by the operating system was clipped by PL2 (POWER_LIMIT_2) power limiting algorithm.	
4	RW	00000000h	Uncore	pp0_clipped_gt_driver Set if the PP0 (IA) frequency requested by the operating system was clipped by GT driver.	
3	RW	00000000h		Reserved (RSVD)	
2	RW	00000000h	Uncore	pp0_clipped_pl1 Set if the PP0 (IA) frequency requested by the operating system was clipped by PL1 (POWER_LIMIT_1) power limiting algorithm.	
1	RW	00000000h	Uncore	pp0_clipped_thermals Set if the PP0 (IA) frequency requested by the operating system was clipped by internal Thermal Throttling algorithm.	
0	RW	00000000h	Uncore	pp0_clipped_ext_prochot Set if the PP0 (IA) frequency requested by the operating system was clipped by external PROCHOT indication.	

2.19.10 PCU_MMIO_FREQ_CLIPPING_CAUSE_LOG Register

This register is the log of the frequency clipping cause in MMIO for both Power plane 0 (IA) and Power plane 1 (GT). The bit definitions are the same as in PCU_MMIO_FREQ_CLIPPING_CAUSE_STATUS register; the processor will constantly 'or' in the status to give a log of any clipping since the last clear. Software can clear the log by writing zeros to this register.

Note: There is no assurance of atomicity of software read-clear and hardware read-modify-write; thus, there is a small chance of misreporting.

B/D/F/Type: Address Offset: Default Value: Access: Size:		0/0/0/M0 5C24-5C2 00000000 RW 32 bits	CHBAR PCU 7h 9h	
Bit	Access	Reset Value	RST/ PWR	Description
31	RW	00000000h	Uncore	pp1_clipped Set if the PP1 (GT) frequency requested was clipped.
30	RW	00000000h		Reserved (RSVD)
29	RW	00000000h	Uncore	pp1_clipped_non_turbo Set if the PP1 (GT) frequency requested was clipped, but current frequency is lower than RP1 (MAX_NON_TURBO).
28:25	RW	00000000h		Reserved (RSVD)
24	RW	00000000h	Uncore	pp1_clipped_edp Set if the PP1 (GT) frequency requested was clipped by EDP limit (Vmax, Iccmax, Reliability, and so on).
23	RW	00000000h		Reserved (RSVD)
22	RW	00000000h	Uncore	pp1_clipped_hot_vr Set if the PP1 (GT) frequency requested was clipped by HOT indication from VR on SVID.
21	RW	00000000h	Uncore	p1_clipped_pl2 Set if the PP1 (GT) frequency requested was clipped by PL2 (POWER_LIMIT_2) power limiting algorithm.
20-19	RW	00000000h		Reserved (RSVD)
18	RW	00000000h	Uncore	pp1_clipped_pl1 Set if the PP1 (GT) frequency requested was clipped by PL1 (POWER_LIMIT_1) power limiting algorithm.
17	RW	00000000h	Uncore	pp1_clipped_thermals Set if the PP1 (GT) frequency requested was clipped by internal Thermal Throttling algorithm.
16	RW	00000000h	Uncore	pp1_clipped_ext_prochot Set if the PP1 (GT) frequency requested was clipped by external PROCHOT indication.
15	RW	00000000h	Uncore	pp0_clipped Set if the PP0 (IA) frequency requested by OS was clipped.
14	RW	00000000h	Uncore	pp0_clipped_n_core_turbo Set if the PP0 (IA) frequency requested by OS was clipped, but current frequency is lower than MAX_TURBO[n-cores].

B/D/F/Type: Address Offset: Default Value: Access: Size:		0/0/0/M0 5C24-5C2 00000000 RW 32 bits	CHBAR PCU 7h 9h	
Bit	Access	Reset Value	RST/ PWR	Description
13	RW	00000000h	Uncore	pp0_clipped_non_turbo Set if the PP0 (IA) frequency requested by OS was clipped, but current frequency is lower than MAX_NON_TURBO.
12:9	RW	00000000h		Reserved (RSVD)
8	RW	00000000h	Uncore	pp0_clipped_edp Set if the PP0 (IA) frequency requested by OS was clipped by EDP limit (Vmax, Iccmax, Reliability, and so on).
7	RW	00000000h	Uncore	pp0_clipped_mct Set if the PP0 (IA) frequency requested by OS was clipped by Multi Core Turbo demotion algorithm.
6	RW	00000000h	Uncore	pp0_clipped_hot_vr Set if the PP0 (IA) frequency requested by OS was clipped by HOT indication from VR on SVID.
5	RW	00000000h	Uncore	pp0_clipped_pl2 Set if the PP0 (IA) frequency requested by OS was clipped by PL2 (POWER_LIMIT_2) power limiting algorithm.
4	RW	00000000h	Uncore	pp0_clipped_gt_driver Set if the PP0 (IA) frequency requested by OS was clipped by GT driver.
3	RW	00000000h		Reserved (RSVD)
2	RW	00000000h	Uncore	pp0_clipped_pl1 Set if the PP0 (IA) frequency requested by OS was clipped by PL1 (POWER_LIMIT_1) power limiting algorithm.
1	RW	00000000h	Uncore	pp0_clipped_thermals Set if the PP0 (IA) frequency requested by OS was clipped by internal Thermal Throttling algorithm.
0	RW	00000000h	Uncore	pp0_clipped_ext_prochot Set if the PP0 (IA) frequency requested by OS was clipped by external PROCHOT indication.

2.19.11 SSKPD—Sticky Scratchpad Data Register

This register holds 64 writable bits with no functionality behind them. It is for the convenience of BIOS and graphics drivers.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/0 5D1 000 RW 64 1	/0/MCHBAR L0-5D17h 0000000000 S, RW bits	t PCU 0000h	
Bit	Access	Reset Value	RST/ PWR	Description	
63:32	RWS	00000000h	Powergood	Scratchpad Data (SKPD) 2 WORDs of data storage.	
31:30	RWS	00b	Powergood	Reserved for Future Use (RWSVD3) Bit 30 controls the way BIOS calculate WM3 value. Bit 31 is reserved for future use.	
29:24	RWS	00h	Powergood	DDRIO Power down Shutdown Latency Time (WM3) Number of microseconds to access memory if memory is in Self Refresh (SR) with DDRIO in Power down (EPG mode) (0.5 us granularity). 00h = 0 us 01h = 0.5 us 02h = 1 us 3Fh = 31.5 us Note: The value in this field corresponds to the memory latency requested to the Display Engine when Memory PLL Shutdown is enabled. The Display LP3 latency and watermark values (GTTMMADR offset 45110h) should be programmed to match the latency in this register.	
23	RWS	0b	Powergood	Reserved for Future Use (RWSVD2) Reserved for Future Use	
22	RW	0b	Uncore	MPLL Fast Lock Disable (MPLL_FAST_DIS) Copy of CR PCU [SBPLL_FAST_DIS]	
21:16	RWS	00000ь	Powergood	MPLL Shutdown Latency Time (WM2) Number of microseconds to access memory if the MPLL is shutdown (requires memory in Self Refresh). The value is programmed in 0.5 us granularity. 00h = 0 us 01h = 0.5 us 02h = 1 us 3Fh = 31.5 us Note: The value in this field corresponds to the memory latency requested to the Display Engine when MPLL shutdown is enabled. The Display LP2 latency and watermark values (GTTMMADR offset 4510Ch) should be programmed to match the latency in this register.	
15:14	RWS	00b	Powergood	Reserved for Future Use (RWSVD1) Reserved for Future Use	

B/D/F/Type:0/0/0Address Offset:5D10Reset Value:00000Access:RWS,Size:64 bit		/0/MCHBAR .0-5D17h 0000000000 S, RW Dits	PCU 0000h		
Bit	Access	Reset Value	RST/ PWR	Description	
13:8	RWS	00000b	Powergood	 Self Refresh and MDLL Latency Time (WM1) This field provides the number of microseconds to access memory if memory is in Self Refresh and MDLL is turned off (0.5 us granularity). 00h = 0 us 01h = 0.5 us 02h = 1 us 3Fh = 31.5 us Note: The value in this field corresponds to the memory latency requested to the Display Engine when Memory is in Self Refresh. The Display LP1 latency and watermark values (GTTMMADR offset 45108h) should be programmed to match the latency in this register. 	
7:6	RWS	00b	Powergood	Reserved for Future Use (RWSVD0) Reserved for Future Use	
5:0	RWS	000000b	Powergood	 Normal Latency Time (WM0) This field provides the number of microseconds to access memory for normal memory operations (0.1 us granularity). 00h = 0 us 01h = 0.1 us 02h = 0.2 us 3Fh = 6.3 us Note: For the processor, the worst-case latency is 0.6 us. WM0 latency is the sum of: Partial Intel High Definition Audio request in front of the Display Request = 100 ns Refresh just in front of the Intel High Definition Audio request = 300 ns Maintenance (ZQCAL + some clocks) = 130 ns (DDR 1067) to 80 ns (DDR 1600) Activate = 15 ns CAS = 15 ns SA Roundtrip = ~15 ns 	

2.20 **PXPEPBAR Registers**

Table 2-23. PXPEPBAR Address Map

Address Offset	Register Symbol	Register Name	Reset Value	Access
0-13h	RSVD	Reserved	0h	RO
14-17h	EPVCORCTL	EP VC 0 Resource Control	800000FFh	RO, RW
18-9Fh	RSVD	Reserved	—	-

2.20.1 EPVC0RCTL—EP VC 0 Resource Control Register

This register controls the resources associated with Egress Port Virtual Channel 0.

B/D/F/Type:0/0/0/PXPEPAddress Offset:14–17hReset Value:80000FFhAccess:RO, RWSize:32 bitsBIOS Optimal Default00000h				BAR
Bit	Access	Reset Value	RST/ PWR	Description
31:20	RO	0h		Reserved (RSVD)
19:17	RW 000b Uncore		Uncore	Port Arbitration Select (PAS) This field configures the VC resource to provide a particular Port Arbitration service. The value of 0h corresponds to the bit position of the only asserted bit in the Port Arbitration Capability field.
16:0	RO	0h		Reserved (RSVD)

2.21 Default PEG/DMI VTd Remapping Engine Registers

Address Offset	Symbol	Register Name	Reset Value	Access
0-3h	VER_REG	Version Register	00000010h	RO
4-7h	RSVD	Reserved	0h	RO
8-Fh	CAP_REG	Capability Register	00C9008020660 262h	RO
10-17h	ECAP_REG	Extended Capability Register	0000000000F01 0DAh	RO-V, RO
18-1Bh	GCMD_REG	Global Command Register	00000000h	RO, WO
1C-1Fh	GSTS_REG	Global Status Register	00000000h	RO, RO-V
20-27h	RTADDR_REG	Root-Entry Table Address Register	0000000000000 000h	RW
28-2Fh	CCMD_REG	Context Command Register	0000000000000 000h	RW-V, RW, RO-V
30-33h	RSVD	Reserved	0h	RO
34-37h	FSTS_REG	Fault Status Register	00000000h	RW1CS, ROS-V, RO
38-3Bh	FECTL_REG	Fault Event Control Register	80000000h	RW, RO-V
3C-3Fh	FEDATA_REG	Fault Event Data Register	00000000h	RW
40-43h	FEADDR_REG	Fault Event Address Register	00000000h	RW
44-47h	FEUADDR_REG	Fault Event Upper Address Register	00000000h	RW
48-57h	RSVD	Reserved	0h	RO
58-5Fh	AFLOG_REG	Advanced Fault Log Register	0000000000000 000h	RO
60-63h	RSVD	Reserved	0h	RO
64-67h	PMEN_REG	Protected Memory Enable Register	00000000h	RW, RO-V
68-6Bh	PLMBASE_REG	Protected Low-Memory Base Register	00000000h	RW
6C-6Fh	PLMLIMIT_REG	Protected Low-Memory Limit Register	00000000h	RW
70-77h	PHMBASE_REG	Protected High-Memory Base Register	0000000000000 000h	RW
78-7Fh	PHMLIMIT_REG	Protected High-Memory Limit Register	0000000000000 000h	RW
80-87h	IQH_REG	Invalidation Queue Head Register	0000000000000 000h	RO-V
88-8Fh	IQT_REG	Invalidation Queue Tail Register	0000000000000 000h	RW-L
90-97h	IQA_REG	Invalidation Queue Address Register	0000000000000 000h	RW-L
98-9Bh	RSVD	Reserved	0h	RO
9C-9Fh	ICS_REG	Invalidation Completion Status Register	00000000h	RW1CS
A0-A3h	IECTL_REG	Invalidation Event Control Register	80000000h	RW-L, RO-V
A4-A7h	IEDATA_REG	Invalidation Event Data Register	0000000h	RW-L
A8-ABh	IEADDR_REG	Invalidation Event Address Register	00000000h	RW-L

Table 2-24. Default PEG/DMI VTd Remapping Engine Register Address Map (Sheet 1 of 2)

Table 2-24. Default PEG/DMI VTd Remapping Engine Register Address Map (Sheet 2 of 2)

Address Offset	Symbol	Register Name	Reset Value	Access
AC-AFh	IEUADDR_REG	Invalidation Event Upper Address Register	00000000h	RW-L
B0-B7h	RSVD	Reserved	0h	RO
B8-BFh	IRTA_REG	Interrupt Remapping Table Address Register	0000000000000 000h	RW-L
C0-FFh	RSVD	Reserved	0h	RO
100-107h	IVA_REG	Invalidate Address Register	0000000000000 000h	RW
108-10Fh	IOTLB_REG	IOTLB Invalidate Register	0000000000000 000h	RW, RW-V, RO-V
110-FF3h	RSVD	Reserved	-	—

2.21.1 VER_REG—Version Register

This register reports the architecture version supported. Backward compatibility for the architecture is maintained with new revision numbers, allowing software to load remapping hardware drivers written for prior architecture versions.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default)/0/VC0PR 3h 000010h bits 0000h	ЕМАР
Bit	Access	Reset Value	RST/ PWR	Description
31:8	RO	0h		Reserved (RSVD)
7:4	RO	0001b	Uncore	Major Version number (MAX) This field indicates supported architecture version.
3:0	RO	0000b	Uncore	Minor Version number (MIN) This bit indicates supported architecture minor version.

2.21.2 CAP_REG—Capability Register

This register reports general remapping hardware capabilities.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/0 8-F 000 RO 64 fault 000	0/0/VC0PREMAP 8-Fh 00C9008020660262h RO 64 bits 000h			
Bit	Access	Reset Value	RST/ PWR	Description		
63:56	RO	0h		Reserved (RSVD)		
55	RO	1b	Uncore	 DMA Read Draining (DRD) 0 = Hardware does not support draining of DMA read requests. 1 = Hardware supports draining of DMA read requests. 		
54	RO	1b	Uncore	 DMA Write Draining (DWD) 0 = Hardware does not support draining of DMA write requests. 1 = Hardware supports draining of DMA write requests. 		
53:48	RO	001001b	Uncore	Maximum Address Mask Value (MAMV) The value in this field indicates the maximum supported value for the Address Mask (AM) field in the Invalidation Address register (IVA_REG) and IOTLB Invalidation Descriptor (iotlb_inv_dsc). This field is valid only when the PSI field in Capability register is reported as set.		
47:40	RO	00000000 b	Uncore	Number of Fault-recording Registers (NFR) The number of fault recording registers is computed as N+1, where N is the value reported in this field. Implementations must support at least one fault recording register (NFR = 0) for each remapping hardware unit in the platform. The maximum number of fault recording registers per remapping hardware unit is 256.		
39	RO	1b	Uncore	 Page Selective Invalidation (PSI) 0 = Hardware supports only domain and global invalidates for IOTLB 1 = Hardware supports page selective, domain and global invalidates for IOTLB. Hardware implementations reporting this field as set are recommended to support a Maximum Address Mask Value (MAMV) value of at least 9. 		
38:38	RO	0h		Reserved (RSVD)		
37:34	RO	0000Ь	Uncore	<pre>Super-Page Support (SPS) This field indicates the super page sizes supported by hardware. A value of 1 in any of these bits indicates the corresponding super-page size is supported. The super-page sizes corresponding to various bit positions within this field are: 0 = 21-bit offset to page frame (2 MB) 1 = 30-bit offset to page frame (1 GB) 2 = 39-bit offset to page frame (512 GB) 3 = 48-bit offset to page frame (1 TB) Hardware implementations supporting a specific super-page size must support all smaller super-page sizes; that is, only valid values for this field are 0001b, 0011b, 0111b, 1111b.</pre>		

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/0 8–F 000 RO 64 fault 000	0/0/0/VCOPREMAP 8-Fh 00C9008020660262h RO 64 bits 000h			
Bit	Access	Reset Value	RST/ PWR	Description		
33:24	RO	020h	Uncore	Fault-recording Register offset (FRO) This field specifies the location to the first fault recording register relative to the register base address of this remapping hardware unit. If the register base address is X, and the value reported in this field is Y, the address for the first fault recording register is calculated as X+(16*Y).		
23	RO	Ob	Uncore	 Isochrony (ISOCH) Remapping hardware unit has no critical isochronous requesters in its scope. Remapping hardware unit has one or more critical isochronous requesters in its scope. To ensure isochronous performance, software must ensure invalidation operations do not impact active DMA streams from such requesters. This implies, when DMA is active, software performs page-selective invalidations (and not coarser invalidations). 		
22	RO	1b	Uncore	 Zero Length Read (ZLR) 0 = Indicates the remapping hardware unit blocks (and treats as fault) zero length DMA read requests to write-only pages. 1 = Indicates the remapping hardware unit supports zero length DMA read requests to write-only pages. DMA remapping hardware implementations are recommended to report ZLR field as set. 		
21:16	RO	100110b	Uncore	Maximum Guest Address Width (MGAW) This field indicates the maximum DMA virtual addressability supported by remapping hardware. The Maximum Guest Address Width (MGAW) is computed as (N+1), where N is the value reported in this field. For example, a hardware implementation supporting 48-bit MGAW reports a value of 47 (101111b) in this field. If the value in this field is X, untranslated and translated DMA requests to addresses above $2^{(x+1)-1}$ are always blocked by hardware. Translations requests to address above $2^{(x+1)-1}$ from allowed devices return a null Translation Completion Data Entry with R=W=0. Guest addressability for a given DMA request is limited to the minimum of the value reported through this field and the adjusted guest address width of the corresponding page-table structure. (Adjusted guest address width supported by hardware are reported through the SAGAW field). Implementations are recommended to support MGAW at least equal to the physical addressability (host address width) of the platform.		
15:13	RO	0h		Reserved (RSVD)		

B/D/F/Type:0/0/0/VC0PRAddress Offset:8-FhReset Value:00C90080206Access:ROSize:64 bitsBIOS Optimal Default000h				2EMAP 60262h
Bit	Access	Reset Value	RST/ PWR	Description
12:8	RO	00010Ь	Uncore	Supported Adjusted Guest Address Widths (SAGAW) This 5-bit field indicates the supported adjusted guest address widths (which in turn represents the levels of page-table walks for the 4 KB base page size) supported by the hardware implementation. A value of 1 in any of these bits indicates the corresponding adjusted guest address width is supported. The adjusted guest address widths corresponding to various bit positions within this field are: 0 = 30-bit AGAW (2-level page table) 1 = 39-bit AGAW (3-level page table) 2 = 48-bit AGAW (4-level page table) 3 = 57-bit AGAW (5-level page table) 4 = 64-bit AGAW (6-level page table) Software must ensure that the adjusted guest address width used to setup the page tables is one of the supported guest address widths reported in this field.
7	RO	Оb	Uncore	 Caching Mode (CM) 0 = Not-present and erroneous entries are not cached in any of the remapping caches. Invalidations are not required for modifications to individual not present or invalid entries. However, any modifications that result in decreasing the effective permissions or partial permission increases require invalidations for them to be effective. 1 = Not-present and erroneous mappings may be cached in the remapping caches. Any software updates to the remapping structures (including updates to "not-present" or erroneous entries) require explicit invalidation. Hardware implementations of this architecture must support a value of 0 in this field.
6	RO	1b	Uncore	 Protected High-Memory Region (PHMR) 0 = Indicates protected high-memory region is not supported. 1 = Indicates protected high-memory region is supported.
5	RO	1b	Uncore	Protected Low-Memory Region (PLMR) 0 = Protected low-memory region is not supported. 1 = Protected low-memory region is supported.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Def		0/0 8-F 000 RO 64 fault 000)/0/VCOPR ⁵ h C90080206 bits Dh	REMAP 660262h
Bit	Access	Reset Value	RST/ PWR	Description
4	RO	0b	Uncore	 Required Write-Buffer Flushing (RWBF) 0 = Indicates no write-buffer flushing is needed to ensure changes to memory-resident structures are visible to hardware. 1 = Indicates software must explicitly flush the write buffers to ensure updates made to memory-resident remapping structures are visible to hardware.
3	RO	0b	Uncore	 Advanced Fault Logging (AFL) 0 = Advanced fault logging is not supported. Only primary fault logging is supported. 1 = Advanced fault logging is supported.
2:0	RO	010Ь	Uncore	 Number of domains supported (ND) 000 = Hardware supports 4-bit domain-ids with support for up to 16 domains. 001 = Hardware supports 6-bit domain-ids with support for up to 64 domains. 010 = Hardware supports 8-bit domain-ids with support for up to 256 domains. 011 = Hardware supports 10-bit domain-ids with support for up to 1024 domains. 100 = Hardware supports 12-bit domain-ids with support for up to 4K domains. 111 = Reserved.

2.21.3 ECAP_REG—Extended Capability Register

This register reports remapping hardware extended capabilities.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/0 10- 000 RO 64 fault 000	0/0/0/VCOPREMAP 10-17h 000000000F010DAh RO-V, RO 64 bits 0000000000h			
Bit	Access	Reset Value	RST/ PWR	Description		
63:24	RO	0h		Reserved (RSVD)		
23:20	RO	1111b	Uncore	Maximum Handle Mask Value (MHMV) The value in this field indicates the maximum supported value for the Handle Mask (HM) field in the interrupt entry cache invalidation descriptor (iec_inv_dsc). This field is valid only when the IR field in Extended Capability register is reported as set.		
19:18	RO	0h		Reserved (RSVD)		
17:8	RO	010h	Uncore	IOTLB Register Offset (IRO) This field specifies the offset to the IOTLB registers relative to the register base address of this remapping hardware unit. If the register base address is X, and the value reported in this field is Y, the address for the first IOTLB invalidation register is calculated as X+(16*Y).		
7	RO-V	1b	Uncore	 Snoop Control (SC) 0 = Hardware does not support 1-setting of the SNP field in the page-table entries. 1 = Hardware supports the 1-setting of the SNP field in the page-table entries. 		
6	RO-V	1b	Uncore	 Pass Through (PT) 0 = Hardware does not support pass-through translation type in context entries. 1 = Hardware supports pass-through translation type in context entries. 		
5	RO	0b	Uncore	 Caching Hints (CH) 0 = Hardware does not support IOTLB caching hints (ALH and EH fields in context-entries are treated as reserved). 1 = Hardware supports IOLTB caching hints through the ALH and EH fields in context-entries. 		
4	RO	0h		Reserved (RSVD)		
3	RO-V	1b	Uncore	Interrupt Remapping Support (IR) 0 = Hardware does not support interrupt remapping. 1 = Hardware supports interrupt remapping. Implementations reporting this field as set must also support Queued Invalidation (QI).		
2	RO	Ob	Uncore	Device IOTLB Support (DI) 0 = Hardware does not support device-IOTLBs. 1 = Hardware supports Device-IOTLBs. Implementations reporting this field as set must also support Queued Invalidation (QI).		
1	RO-V	1b	Uncore	Queued Invalidation Support (QI) 0 = Hardware does not support queued invalidations. 1 = Hardware supports queued invalidations.		

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default			/0/VC0PR 17h 00000000F V, RO bits 000000000	EMAP 010DAh h
Bit	Access	Reset Value	RST/ PWR	Description
0	RO	Ob	Uncore	 Coherency (C) This field indicates if hardware access to the root, context, page-table and interrupt-remap structures are coherent (snooped) or not. 0 = Hardware accesses to remapping structures are non-coherent. 1 = Hardware accesses to remapping structures are coherent. Hardware access to advanced fault log and invalidation queue are always coherent.

2.21.4 GCMD_REG—Global Command Register

This register controls remapping hardware. If multiple control fields in this register need to be modified, software must serialize the modifications through multiple writes to this register.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Def		0/0/0/VCOPR 18-1Bh 00000000h RO, WO 32 bits fault 000000h		ЕМАР
Bit	Access	Reset Value	RST/ PWR	Description
				Translation Enable (TE)
	WO	Оb	Uncore	Software writes to this field to request hardware to enable/disable DMA-remapping:
				0 = Disable DMA remapping
				1 = Enable DMA remapping
31				Hardware reports the status of the translation enable operation through the TES field in the Global Status register.
				There may be active DMA requests in the platform when software updates this field. Hardware must enable or disable remapping logic only at deterministic transaction boundaries, so that any in- flight transaction is either subject to remapping or not at all.
				Hardware implementations supporting DMA draining must drain any in-flight DMA read/write requests queued within the Root- Complex before completing the translation enable command and reflecting the status of the command through the TES field in the Global Status register.
				The value returned on a read of this field is undefined.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/0 18- 000 RO, 32 fault 000)/0/VC0PR -1Bh 000000h WO bits 0000h	ЕМАР
Bit	Access	Reset Value	RST/ PWR	Description
				Set Root Table Pointer (SRTP)
				used by hardware. The root-entry table pointer is specified through the Root-entry Table Address (RTA_REG) register. Hardware reports the status of the "Set Root Table Pointer" operation through the RTPS field in the Global Status register. The "Set Root Table Pointer" operation must be performed before enabling or re-enabling (after disabling) DMA remapping through the TE field.
30	WO	ОЬ	Uncore	After a "Set Root Table Pointer" operation, software must globally invalidate the context cache and then globally invalidate of IOTLB. This is required to ensure hardware uses only the remapping structures referenced by the new root table pointer, and not stale cached entries. While DMA remapping hardware is active, software may update the root table pointer through this field. However, to ensure valid in-flight DMA requests are deterministically remapped, software must ensure that the structures referenced by the new root table pointer are programmed to provide the same remapping results as the structures referenced by the previous root-table pointer. Clearing this bit has no effect. The value returned on read of this field is undefined.
29	RO	Ob	Uncore	Set Fault Log (SFL) This field is valid only for implementations supporting advanced fault logging. Software sets this field to request hardware to set/update the fault-log pointer used by hardware. The fault-log pointer is specified through Advanced Fault Log register. Hardware reports the status of the 'Set Fault Log' operation through the FLS field in the Global Status register. The fault log pointer must be set before enabling advanced fault logging (through EAFL field). Once advanced fault logging is enabled, the fault log pointer may be updated through this field while DMA remapping is active. Clearing this bit has no effect. The value returned on read of this field is undefined.
				Enable Advanced Fault Logging (EAFL)
28	RO	ОЬ	Uncore	 I his field is valid only for implementations supporting advanced fault logging. Software writes to this field to request hardware to enable or disable advanced fault logging: 0 = Disable advanced fault logging. In this case, translation faults are reported through the Fault Recording registers. 1 = Enable use of memory-resident fault log. When enabled, translation faults are recorded in the memory-resident log. The fault log pointer must be set in hardware (through the SFL field) before enabling advanced fault logging enable operation through the AFLS field in the Global Status register. The value returned on read of this field is undefined.

B/D/F/ Address Reset V Access: Size: BIOS Op	Type: 5 Offset: alue: ptimal De	0/0 18- 000 RO, 32 fault 000)/0/VC0PR -1Bh)000000h , WO bits)000h	REMAP
Bit	Access	Reset Value	RST/ PWR	Description
				Write Buffer Flush (WBF)
				This bit is valid only for implementations requiring write buffer flushing.
27	RO	0b	Uncore	Software sets this field to request that hardware flush the Root- Complex internal write buffers. This is done to ensure any updates to the memory-resident remapping structures are not held in any internal write posting buffers.
				Hardware reports the status of the write buffer flushing operation through the WBFS field in the Global Status register.
				Clearing this bit has no effect. The value returned on a read of this field is undefined.
26	wo	Оb	Uncore	 Queued Invalidation Enable (QIE) This field is valid only for implementations supporting queued invalidations. Software writes to this field to enable or disable queued invalidations. 0 = Disable queued invalidations. 1 = Enable use of queued invalidations. Hardware reports the status of queued invalidation enable operation through QIES field in the Global Status register. The value returned on a read of this field is undefined.
25	WO	Оb	Uncore	Interrupt Remapping Enable (IRE) This field is valid only for implementations supporting interrupt remapping. 0 = Disable interrupt-remapping hardware 1 = Enable interrupt-remapping hardware Hardware reports the status of the interrupt remapping enable operation through the IRES field in the Global Status register. There may be active interrupt requests in the platform when software updates this field. Hardware must enable or disable interrupt-remapping logic only at deterministic transaction boundaries, so that any in-flight interrupts are either subject to remapping or not at all. Hardware implementations must drain any in-flight interrupts requests queued in the Root-Complex before completing the interrupt-remapping enable command and reflecting the status of the command through the IRES field in the Global Status register. The value returned on a read of this field is undefined.

B/D/F/ Address Reset Va Access: Size: BIOS Op	Type: Offset: alue: otimal De	0/0 18- 000 RO, 32 fault 000)/0/VC0PR -1Bh)000000h , WO bits)000h	ΕΜΑΡ
Bit	Access	Reset Value	RST/ PWR	Description
				Set Interrupt Remap Table Pointer (SIRTP)
				This field is valid only for implementations supporting interrupt- remapping.
				Software sets this field to set/update the interrupt remapping table pointer used by hardware. The interrupt remapping table pointer is specified through the Interrupt Remapping Table Address (IRTA_REG) register.
	24 WO Ob		Uncore	Hardware reports the status of the 'Set Interrupt Remap Table Pointer' operation through the IRTPS field in the Global Status register.
				The 'Set Interrupt Remap Table Pointer' operation must be performed before enabling or re-enabling (after disabling) interrupt-remapping hardware through the IRE field.
24		UD		After a 'Set Interrupt Remap Table Pointer' operation, software must globally invalidate the interrupt entry cache. This is required to ensure hardware uses only the interrupt-remapping entries referenced by the new interrupt remap table pointer, and not any stale cached entries.
				While interrupt remapping is active, software may update the interrupt remapping table pointer through this field. However, to ensure valid in-flight interrupt requests are deterministically remapped, software must ensure that the structures referenced by the new interrupt remap table pointer are programmed to provide the same remapping results as the structures referenced by the previous interrupt remap table pointer.
				Clearing this bit has no effect. The value returned on a read of this field is undefined.
23:0	RO	0h		Reserved (RSVD)

2.21.5 GSTS_REG-Global Status Register

This register reports general remapping hardware status.

B/D/F/ Address Reset V Access: Size: BIOS Op	Type: offset: alue: otimal De	0/0 1C- 000 RO, 32 fault 000)/0/VC0PR -1Fh)000000h , RO-V bits)000h	EMAP
Bit	Access	Reset Value	RST/ PWR	Description
31	RO-V	0b	Uncore	Translation Enable Status (TES)This field indicates the status of DMA-remapping hardware.0 = DMA-remapping hardware is not enabled1 = DMA-remapping hardware is enabled
30	RO-V	Оb	Uncore	Root Table Pointer Status (RTPS) This field indicates the status of the root- table pointer in hardware. This field is cleared by hardware when software sets the SRTP field in the Global Command register. This field is set by hardware when hardware completes the 'Set Root Table Pointer' operation using the value provided in the Root-Entry Table Address register.
29	RO	Ob	Uncore	 Fault Log Status (FLS) This field is: Cleared by hardware when software Sets the SFL field in the Global Command register. Set by hardware when hardware completes the 'Set Fault Log Pointer' operation using the value provided in the Advanced Fault Log register.
28	RO	0b	Uncore	Advanced Fault Logging Status (AFLS) This field is valid only for implementations supporting advanced fault logging. It indicates the advanced fault logging status: 0 = Advanced Fault Logging is not enabled. 1 = Advanced Fault Logging is enabled.
27	RO	Оb	Uncore	 Write Buffer Flush Status (WBFS) This field is valid only for implementations requiring write buffer flushing. This field indicates the status of the write buffer flush command. It is: Set by hardware when software sets the WBF field in the Global Command register. Cleared by hardware when hardware completes the write buffer flushing operation.
26	RO-V	0b	Uncore	Queued Invalidation Enable Status (QIES)This field indicates queued invalidation enable status.0 = queued invalidation is not enabled1 = queued invalidation is enabled
25	RO-V	Оb	Uncore	Interrupt Remapping Enable Status (IRES)This field indicates the status of Interrupt-remapping hardware.0 = Interrupt-remapping hardware is not enabled1 = Interrupt-remapping hardware is enabled
24	RO-V	Оb	Uncore	 Interrupt Remapping Table Pointer Status (IRTPS) This field indicates the status of the interrupt remapping table pointer in hardware. This field is: Cleared by hardware when software sets the SIRTP field in the Global Command register. Set by hardware when hardware completes the set interrupt remap table pointer operation using the value provided in the Interrupt Remapping Table Address register.
23:0	RO	0h		Reserved (RSVD)

2.21.6 RTADDR_REG—Root-Entry Table Address Register

This register provides the base address of root-entry table.

B/D/F/Type:0/0Address Offset:20-Reset Value:000Access:RWSize:64BIOS Optimal Default000)/0/VC0PR -27h)000000000 bits)00000000h	EMAP 00000h
Bit	Access	Reset Value	RST/ PWR	Description
63:39	RO	0h		Reserved (RSVD)
38:12	RW	0000000h	Uncore	Root Table Address (RTA) This register points to base of page aligned, 4 KB-sized root- entry table in system memory. Hardware ignores and not implements bits 63:HAW, where HAW is the host address width. Software specifies the base address of the root-entry table through this register, and programs it in hardware through the SRTP field in the Global Command register. Reads of this register returns value that was last programmed to it.
11:0	RO	0h		Reserved (RSVD)

2.21.7 CCMD_REG—Context Command Register

This register manages context cache. The act of writing the uppermost byte of the CCMD_REG with the ICC field set causes the hardware to perform the context-cache invalidation.

B/D/F/ Address Reset V Access: Size: BIOS Op	Type: 5 Offset: alue: otimal De	0/0 28- 000 RW 64 fault 000	0/0/VC0PR -2Fh 000000000 -V, RW, RC bits 0000000h	EEMAP 00000h D-V
Bit	Access	Reset Value	RST/ PWR	Description
63	RW-V	Oh	Uncore	Invalidate Context-Cache (ICC) Software requests invalidation of context-cache by setting this field. Software must also set the requested invalidation granularity by programming the CIRG field. Software must read back and check the ICC field is Clear to confirm the invalidation is complete. Software must not update this register when this field is set. Hardware clears the ICC field to indicate the invalidation request is complete. Hardware also indicates the granularity at which the invalidation operation was performed through the CAIG field. Software must submit a context-cache invalidation request through this field only when there are no invalidation requests pending at this remapping hardware unit. Since information from the context-cache may be used by hardware to tag IOTLB entries, software must perform domain- selective (or global) invalidation of IOTLB after the context cache invalidation has completed. Hardware implementations reporting write-buffer flushing requirement (RWBF=1 in Capability register) must implicitly perform a write buffer flush before invalidating the context cache.
62:61	RW	0h	Uncore	 Context Invalidation Request Granularity (CIRG) Software provides the requested invalidation granularity through this field when setting the ICC field: 00 = Reserved. 01 = Global Invalidation request. 10 = Domain-selective invalidation request. The target domainid must be specified in the DID field. 11 = Device-selective invalidation request. The target sourceid(s) must be specified through the SID and FM fields, and the domain-id (that was programmed in the Context-entry for these device(s)) must be provided in the DID field. Hardware implementations may process an invalidation request by performing invalidation at a coarser granularity than requested. Hardware indicates completion of the invalidation request by clearing the ICC field. At this time, hardware also indicates the granularity at which the actual invalidation was performed through the CAIG field.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/0 28- 000 RW 64 fault 000	0/0/0/VC0PREMAP 28-2Fh 0000000000000000 RW-V, RW, RO-V 64 bits 00000000h		
Bit	Access	Reset Value	RST/ PWR	Description	
				Context Actual Invalidation Granularity (CAIG)	
				Hardware reports the granularity at which an invalidation request was processed through the CAIG field at the time of reporting invalidation completion (by clearing the ICC field). The following are the encodings for this field: 00 = Reserved.	
60:59	RO-V	0h	Uncore	01 = Global Invalidation performed. This could be in response to a global, domain-selective or device-selective invalidation request.	
				10 = Domain-selective invalidation performed using the domain- id specified by software in the DID field. This could be in response to a domain-selective or device-selective invalidation request.	
				11 = Device-selective invalidation performed using the source-id and domain-id specified by software in the SID and FM fields. This can only be in response to a device-selective invalidation request.	
58:34	RO	0h		Reserved (RSVD)	
				Function Mask (FM)	
	RW	Oh		Software may use the Function Mask to perform device-selective invalidations on behalf of devices supporting PCI Express Phantom Functions.	
				This field specifies which bits of the function number portion (least significant three bits) of the SID field to mask when performing device-selective invalidations. The following encodings are defined for this field:	
33:32			Uncore	00 = No bits in the SID field masked.	
				field.	
				10 = Mask two most significant bit of function number in the SID field.	
				11 = Mask all three bits of function number in the SID field.	
				through the FM and SID fields must have to the domain-id specified in the DID field.	
				Source ID (SID)	
31:16	RW	0000h	Uncore	corresponding context-entry needs to be selectively invalidated. This field along with the FM field must be programmed by software for device-selective invalidation requests.	
15:8	RO	0h		Reserved (RSVD)	
7:0	RW	00h	Uncore	Domain-ID (DID) This field indicates the id of the domain whose context-entries need to be selectively invalidated. This field must be programmed by software for both domain-selective and device- selective invalidation requests. The Capability register reports the domain-id width supported by	
				hardware. Software must ensure that the value written to this field is within this limit. Hardware may ignore and not implement bits15:N, where N is the supported domain-id width reported in the Capability register.	

2.21.8 FSTS_REG—Fault Status Register

This register indicates the various error status.

B/D/F/ Address Reset V Access: Size: BIOS Op	Type: offset: alue: otimal De	0/0 34- 000 RW 32 fault 000)/0/VCOPRE -37h)00000h (1CS, ROS-V, bits)00h	MAP RO
Bit	Access	Reset Value	RST/ PWR	Description
31:16	RO	0h		Reserved (RSVD)
15:8	ROS-V	00h	Powergood	Fault Record Index (FRI) This field is valid only when the PPF field is set. The FRI field indicates the index (from base) of the fault recording register to which the first pending fault was recorded when the PPF field was set by hardware. The value read from this field is undefined when the PPF field is clear.
7	RO	0h		Reserved (RSVD)
6	RO	0b	Uncore	Invalidation Time-out Error (ITE) Hardware detected a Device-IOTLB invalidation completion time-out. At this time, a fault event may be generated based on the programming of the Fault Event Control register. Hardware implementations not supporting device Device- IOTLBs implement this bit as RsvdZ.
5	RO	Оb	Uncore	Invalidation Completion Error (ICE) Hardware received an unexpected or invalid Device-IOTLB invalidation completion. This could be due to either an invalid ITag or invalid source-id in an invalidation completion response. At this time, a fault event may be generated based on the programming of the Fault Event Control register. Hardware implementations not supporting Device-IOTLBs implement this bit as RsvdZ.
4	RW1CS	Оb	Powergood	Invalidation Queue Error (IQE) Hardware detected an error associated with the invalidation queue. This could be due to either a hardware error while fetching a descriptor from the invalidation queue, or hardware detecting an erroneous or invalid descriptor in the invalidation queue. At this time, a fault event may be generated based on the programming of the Fault Event Control register. Hardware implementations not supporting queued invalidations implement this bit as RsvdZ.
3	RO	0b	Uncore	Advanced Pending Fault (APF) When this field is clear, hardware sets this field when the first fault record (at index 0) is written to a fault log. At this time, a fault event is generated based on the programming of the Fault Event Control register. Software writing 1 to this field clears it. Hardware implementations not supporting advanced fault logging implement this bit as RsvdZ.

B/D/F/Type:0/0/0/V0Address Offset:34-37hReset Value:0000000Access:RW1CS, FSize:32 bitsBIOS Optimal Default00000h			0/0/VC0PRE -37h 000000h 1CS, ROS-V, bits 000h	MAP RO
Bit	Access	Reset Value	RST/ PWR	Description
				Advanced Fault Overflow (AFO)
2	RO	0b	Uncore	Hardware sets this field to indicate advanced fault log overflow condition. At this time, a fault event is generated based on the programming of the Fault Event Control register.
				Hardware implementations not supporting advanced fault logging implement this bit as RsvdZ.
1	ROS-V	ОЬ	Powergood	 Primary Pending Fault (PPF) This field indicates if there are one or more pending faults logged in the fault recording registers. Hardware computes this field as the logical OR of Fault (F) fields across all the fault recording registers of this remapping hardware unit. 0 = No pending faults in any of the fault recording registers 1 = One or more fault recording registers has pending faults. The FRI field is updated by hardware whenever the PPF field is set by hardware. Also, depending on the programming of Fault Event Control register, a fault event is generated when hardware sets this field.
0	RW1CS	Ob	Powergood	Primary Fault Overflow (PFO) Hardware sets this field to indicate overflow of fault recording registers. Software writing 1 clears this field. When this field is set, hardware does not record any new faults until software clears this field.

2.21.9 FECTL_REG—Fault Event Control Register

This register specifies the fault event interrupt message control bits.

B/D/F/ Address Reset V Access: Size: BIOS O	Type: s Offset: alue: ptimal De	0/0 38- 800 RW 32 fault 000)/0/VC0PR -3Bh 000000h /, RO-V bits 000000h	EMAP
Bit	Access	Reset Value	RST/ PWR	Description
31	RW	1b	Uncore	 Interrupt Mask (IM) 0 = No masking of interrupt. When an interrupt condition is detected, hardware issues an interrupt message (using the Fault Event Data and Fault Event Address register values). 1 = This is the value on reset. Software may mask interrupt message generation by setting this field. Hardware is prohibited from sending the interrupt message when this field is set.
30	RO-V	Oh	Uncore	 Interrupt Pending (IP) Hardware sets the IP field whenever it detects an interrupt condition, which is defined as: When primary fault logging is active, an interrupt condition occurs when hardware records a fault through one of the Fault Recording registers and sets the PPF field in Fault Status register. When advanced fault logging is active, an interrupt condition occurs when hardware records a fault in the first fault record (at index 0) of the current fault log and sets the APF field in the Fault Status register. Hardware detected error associated with the Invalidation Queue, setting the IQE field in the Fault Status register. Hardware detected invalid Device-IOTLB invalidation completion, setting the ICE field in the Fault Status register. Hardware detected Device-IOTLB invalidation completion timeout, setting the ITE field in the Fault Status register. If any of the status fields in the Fault Status register was already set at the time of setting any of these fields, it is not treated as a new interrupt condition. The IP field is kept set by hardware while the interrupt message is held pending. The interrupt message could be held pending due to interrupt mask (IM field) being set or other transient hardware condition is serviced. This could be due to either: Hardware issuing the interrupt message due to either change in the transient hardware condition that caused interrupt message to be held pending, or due to software clearing the IM field. Software servicing all the pending interrupt status fields in the Fault Status register as follows: When primary fault logging is active, software clearing the Fault (F) field in Fault Hardware register so the evaluated as clear. Software clearing other status fields in the Fault Status register by writing back the value read from the respective fields.
29:0	RO	0h		Reserved (RSVD)

2.21.10 FEDATA_REG—Fault Event Data Register

B/D/F/Type:0/0Address Offset:3C-Reset Value:000Access:RWSize:32 1)/0/VC0PR -3Fh)000000h bits	REMAP	
Bit	Access	Reset Value	RST/ PWR	Description
31:16	RW	0000h	Uncore	Extended Interrupt Message Data (EIMD): This field is valid only for implementations supporting 32-bit interrupt data fields. Hardware implementations supporting only 16-bit interrupt data may treat this field as RsvdZ.
15:0	RW	0000h	Uncore	Interrupt Message Data (IMD): Data value in the interrupt request.

This register specifies the interrupt message data.

2.21.11 FEADDR_REG—Fault Event Address Register

This register specifies the interrupt message address.

B/D/F/Type:0/0/0/VCOPFAddress Offset:40-43hReset Value:00000000hAccess:RWSize:32 bitsBIOS Optimal Default0h)/0/VC0PR -43h)000000h bits	EMAP
Bit	Access	Reset Value	RST/ PWR	Description
31:2	RW	00000000 h	Uncore	Message Address (MA) When fault events are enabled, the contents of this register specify the DWord-aligned address (bits 31:2) for the interrupt request.
1:0	RO	0h		Reserved (RSVD)

2.21.12 FEUADDR_REG—Fault Event Upper Address Register

This register specifies the interrupt message upper address.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/0/0/VC0PRE 44-47h 000000000h RW 32 bits		ΕΜΑΡ
Bit	Access	Reset Value	RST/ PWR	Description
31:0	RW	00000000h	Uncore	Message upper address (MUA) Hardware implementations supporting Extended Interrupt Mode are required to implement this register. Hardware implementations not supporting Extended Interrupt Mode may treat this field as RsvdZ.

2.21.13 AFLOG_REG—Advanced Fault Log Register

This register specifies the base address of the memory-resident fault-log region. This register is treated as RsvdZ for implementations not supporting advanced translation fault logging (AFL field reported as 0 in the Capability register).

B/D/F/Type:0/7Address Offset:58Reset Value:00Access:ROSize:64BIOS Optimal Default00			0/0/0/VC0PREMAP 58–5Fh 0000000000000000h RO 64 bits 000h		
Bit	Access	Reset Value	RST/ PWR	Description	
63:12	RO	00000000 00000h	Uncore	Fault Log Address (FLA) This field specifies the base of 4 KB aligned fault-log region in system memory. Hardware ignores and does not implement bits 63:HAW, where HAW is the host address width. Software specifies the base address and size of the fault log region through this register, and programs it in hardware through the SFL field in the Global Command register. When implemented, reads of this field return the value that was last programmed to it.	
11:9	RO	0h	Uncore	Fault Log Size (FLS) This field specifies the size of the fault log region pointed by the FLA field. The size of the fault log region is $2^X * 4KB$, where X is the value programmed in this register. When implemented, reads of this field return the value that was last programmed to it.	
8:0	RO	0h		Reserved (RSVD)	

2.21.14 PMEN_REG—Protected Memory Enable Register

This register enables the DMA-protected memory regions setup through the PLMBASE, PLMLIMT, PHMBASE, PHMLIMIT registers. The register is always treated as RO for implementations not supporting protected memory regions (PLMR and PHMR fields reported as Clear in the Capability register).

Protected memory regions may be used by software to securely initialize remapping structures in memory. To avoid impact to legacy BIOS usage of memory, software is recommended to not overlap protected memory regions with any reserved memory regions of the platform reported through the Reserved Memory Region Reporting (RMRR) structures.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/0 64- 000 RW 32 fault 000)/0/VC0PR -67h)000000h , RO-V bits)00000h	ΕΜΑΡ
Bit	Access	Reset Value	RST/ PWR	Description
				Enable Protected Memory (EPM) This field controls DMA accesses to the protected low-memory
				and protected high-memory regions.
				 0 = Protected memory regions are disabled. 1 = Protected memory regions are enabled. DMA requests accessing protected memory regions are handled as follows: When DMA remapping is not enabled, all DMA requests accessing protected memory regions are blocked. When DMA remapping is enabled:
31	RW	Oh	Uncore	 DMA requests processed as pass-through (Translation Type value of 10b in Context-Entry) and accessing the protected memory regions are blocked. DMA requests with translated address (AT=10b) and accessing the protected memory regions are blocked.
				 DMA requests that are subject to address remapping, and accessing the protected memory regions may or may not be blocked by hardware. For such requests, software must not depend on hardware protection of the protected memory regions, and instead program the DMA-remapping page-tables to not allow DMA to protected memory regions.
				Remapping hardware access to the remapping structures are not subject to protected memory region checks.
				DMA requests blocked due to protected memory region violation are not recorded or reported as remapping faults.
				Hardware reports the status of the protected memory enable/disable operation through the PRS field in this register. Hardware implementations supporting DMA draining must drain any in-flight translated DMA requests queued within the Root- Complex before indicating the protected memory region as enabled through the PRS field.
30:1	RO	0h		Reserved (RSVD)
0	RO-V	0h	Uncore	<pre>Protected Region Status (PRS) This field indicates the status of protected memory regions: 0 = Protected memory region(s) disabled. 1 = Protected memory region(s) enabled.</pre>

2.21.15 PLMBASE_REG—Protected Low-Memory Base Register

This register sets up the base address of DMA-protected low-memory region below 4 GB. This register must be set up before enabling protected memory through PMEN REG, and must not be updated when protected memory regions are enabled.

This register is always treated as RO for implementations not supporting protected low memory region (PLMR field reported as Clear in the Capability register).

The alignment of the protected low memory region base depends on the number of reserved bits (N:0) of this register. Software may determine N by writing all 1s to this register, and finding the most significant zero bit position with 0 in the value read back from the register. Bits N:0 of this register is decoded by hardware as all 0s.

Software must set up the protected low memory region below 4 GB.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default)/0/VC0PR -6Bh)000000h / bits)00h	REMAP
Bit	Access	Reset Value	RST/ PWR	Description
31:20	RW	000h	Uncore	Protected Low-Memory Base (PLMB) This register specifies the base of protected low-memory region in system memory.
19:0	RO	0h		Reserved (RSVD)

2.21.16 PLMLIMIT_REG—Protected Low-Memory Limit Register

This register sets up the limit address of DMA-protected low-memory region below 4 GB. This register must be set up before enabling protected memory through PMEN REG, and must not be updated when protected memory regions are enabled.

This register is always treated as RO for implementations not supporting protected low memory region (PLMR field reported as Clear in the Capability register).

The alignment of the protected low memory region limit depends on the number of reserved bits (N:0) of this register. Software may determine N by writing all 1s to this register, and finding most significant zero bit position with 0 in the value read back from the register. Bits N:0 of the limit register is decoded by hardware as all 1s.

The Protected low-memory base and limit registers functions as follows:

- Programming the protected low-memory base and limit registers with the same value in bits 31:(N+1) specifies a protected low-memory region of size 2^(N+1) bytes.
- Programming the protected low-memory limit register with a value less than the Protected low-memory base register disables the protected low-memory region.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/0 6C- 000 RW 32 fault 000	0/0/VC0PF -6Fh 000000h / bits 000h	REMAP
Bit	Access	Reset Value	RST/ PWR	Description
31:20	RW	000h	Uncore	Protected Low-Memory Limit (PLML) This register specifies the last host physical address of the DMA- protected low-memory region in system memory.
19:0	RO	0h		Reserved (RSVD)

2.21.17 PHMBASE_REG—Protected High-Memory Base Register

This register sets up the base address of DMA-protected high-memory region. This register must be set up before enabling protected memory through PMEN_REG, and must not be updated when protected memory regions are enabled.

This register is always treated as RO for implementations not supporting protected high memory region (PHMR field reported as Clear in the Capability register).

The alignment of the protected high memory region base depends on the number of reserved bits (N:0) of this register. Software may determine N by writing all 1s to this register, and finding most significant zero bit position below host address width (HAW) in the value read back from the register. Bits N:0 of this register are decoded by hardware as all 0s.

Software may set up the protected high memory region either above or below 4 GB.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default)/0/VC0PR -77h)000000000 bits)000000000	EMAP 00000h 0h
Bit	Access	Reset Value	RST/ PWR	Description
63:39	RO	0h		Reserved (RSVD)
38:20	RW	00000h	Uncore	Protected High-Memory Base (PHMB) This register specifies the base of protected (high) memory region in system memory. Hardware ignores, and does not implement, bits 63:HAW, where HAW is the host address width.
19:0	RO	0h		Reserved (RSVD)

2.21.18 PHMLIMIT_REG—Protected High-Memory Limit Register

This register sets up the limit address of DMA-protected high-memory region. This register must be set up before enabling protected memory through PMEN_REG, and must not be updated when protected memory regions are enabled.

This register is always treated as RO for implementations not supporting protected high memory region (PHMR field reported as Clear in the Capability register).

The alignment of the protected high memory region limit depends on the number of reserved bits (N:0) of this register. Software may determine the value of N by writing all 1s to this register, and finding most significant zero bit position below host address width (HAW) in the value read back from the register. Bits N:0 of the limit register is decoded by hardware as all 1s.

The protected high-memory base and limit registers functions as follows.

- Programming the protected low-memory base and limit registers with the same value in bits HAW:(N+1) specifies a protected low-memory region of size 2^(N+1) bytes.
- Programming the protected high-memory limit register with a value less than the protected high-memory base register disables the protected high-memory region.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default)/0/VC0PR -7Fh)000000000 bits)000000000	EMAP 00000h 0h
Bit	Access	Reset Value	RST/ PWR	Description
63:39	RO	0h		Reserved (RSVD)
38:20	RW	00000h	Uncore	Protected High-Memory Limit (PHML) This register specifies the last host physical address of the DMA- protected high-memory region in system memory. Hardware ignores and does not implement bits 63:HAW, where HAW is the host address width.
19:0	RO	0h		Reserved (RSVD)

2.21.19 IQH_REG—Invalidation Queue Head Register

This register indicates the invalidation queue head. This register is treated as RsvdZ by implementations reporting Queued Invalidation (QI) as not supported in the Extended Capability register.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default)/0/VC0PR -87h 000000000 -V bits 000000000	EMAP 00000h 00h
Bit	Access	Reset Value	RST/ PWR	Description
63:19	RO	0h		Reserved (RSVD)
18:4	RO-V	0000h	Uncore	Queue Head (QH) This field specifies the offset (128-bit aligned) to the invalidation queue for the command that will be fetched next by hardware. Hardware resets this field to 0 whenever the queued invalidation is disabled (QIES field Clear in the Global Status register).
3:0	RO	0h		Reserved (RSVD)

2.21.20 IQT_REG—Invalidation Queue Tail Register

This register indicates the invalidation tail head. This register is treated as RsvdZ by implementations reporting Queued Invalidation (QI) as not supported in the Extended Capability register.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default)/0/VC0PR -8Fh 000000000 -L bits 000000000	EMAP 00000h 00h
Bit	Access	Reset RST/ Value PWR		Description
63:19	RO	0h		Reserved (RSVD)
18:4	RW-L	0000h	Uncore	Queue Tail (QT) This field specifies the offset (128-bit aligned) to the invalidation queue for the command that will be written next by software.
3:0	RO	0h		Reserved (RSVD)

2.21.21 IQA_REG—Invalidation Queue Address Register

This register configures the base address and size of the invalidation queue. This register is treated as RsvdZ by implementations reporting Queued Invalidation (QI) as not supported in the Extended Capability register.

B/D/F/Type:0/0Address Offset:90Reset Value:000Access:RWSize:64BIOS Optimal Default000)/0/VC0PR -97h)000000000 -L bits)000000h	2EMAP 00000h	
Bit	Access	Reset Value	RST/ PWR	Description
63:39	RO	0h		Reserved (RSVD)
38:12	RW-L	0000000h	Uncore	Invalidation Queue Base Address (IQA) This field points to the base of 4 KB aligned invalidation request queue. Hardware ignores and does not implement bits 63:HAW, where HAW is the host address width. Reads of this field return the value that was last programmed to it.
11:3	RO	0h		Reserved (RSVD)
2:0	RW-L	0h	Uncore	Queue Size (QS) This field specifies the size of the invalidation request queue. A value of X in this field indicates an invalidation request queue of $(2^X) 4 \text{ KB}$ pages. The number of entries in the invalidation queue is $2^{(X + 8)}$.

2.21.22 ICS_REG—Invalidation Completion Status Register

This register reports completion status of invalidation wait descriptor with Interrupt Flag (IF) set.

This register is treated as RsvdZ by implementations reporting Queued Invalidation (QI) as not supported in the Extended Capability register.

B/D/F/Type:0/Address Offset:9CReset Value:00Access:RVSize:32BIOS Optimal Default00			0/0/VC0PREI -9Fh 000000h 1CS bits 000000h	мар
Bit	Access	Reset Value	RST/ PWR	Description
31:1	RO	0h		Reserved (RSVD)
0	RW1CS	0b	Powergood	Invalidation Wait Descriptor Complete (IWC) This bit indicates completion of Invalidation Wait Descriptor with Interrupt Flag (IF) field set. Hardware implementations not supporting queued invalidations implement this field as RsvdZ.

2.21.23 IECTL_REG—Invalidation Event Control Register

This register specifies the invalidation event interrupt control bits.

This register is treated as RsvdZ by implementations reporting Queued Invalidation (QI) as not supported in the Extended Capability register.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default)/0/VC0PR -A3h)000000h -L, RO-V bits)000000h	EMAP
Bit	Access	ess Reset RST/ Value PWR		Description
31	RW-L	1b	Uncore	 Interrupt Mask (IM) 0 = No masking of interrupt. When an invalidation event condition is detected, hardware issues an interrupt message (using the Invalidation Event Data and Invalidation Event Address register values). 1 = This is the value on reset. Software may mask interrupt message generation by setting this field. Hardware is prohibited from sending the interrupt message when this field is set.

B/D/F/Type:0/Address Offset:A0Reset Value:80Access:RVSize:32BIOS Optimal Default00		0/0 A0- 800 RW 32 fault 000	0/0/VC0PR -A3h 000000h -L, RO-V bits 000000h	ЕМАР
Bit	Access	Reset RST/ Value PWR		Description
				Interrupt Pending (IP)
			Uncore	Hardware sets the IP field whenever it detects an interrupt condition. Interrupt condition is defined as:
30	RO-V	Ob		 An Invalidation Wait Descriptor with Interrupt Flag (IF) field set completed, setting the IWC field in the Invalidation Completion Status register. If the IWC field in the Invalidation Completion Status register was already set at the time of setting this field, it is not treated as a new interrupt condition
				The IP field is kept set by hardware while the interrupt message is held pending. The interrupt message could be held pending due to interrupt mask (IM field) being set, or due to other transient hardware conditions. The IP field is cleared by hardware as soon as the interrupt message pending condition is serviced. This could be due to either:
				 Hardware issuing the interrupt message due to either change in the transient hardware condition that caused interrupt message to be held pending or due to software clearing the IM field.
				 Software servicing the IWC field in the Invalidation Completion Status register.
29:0	RO	0h		Reserved (RSVD)

2.21.24 IEDATA_REG—Invalidation Event Data Register

This register specifies the Invalidation Event interrupt message data.

This register is treated as RsvdZ by implementations reporting Queued Invalidation (QI) as not supported in the Extended Capability register.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/0/0/VC0PR A4–A7h 00000000h RW-L 32 bits		EMAP
Bit	Access	Reset Value	RST/ PWR	Description
31:16	RW-L	0000h	Uncore	Extended Interrupt Message Data (EIMD) This field is valid only for implementations supporting 32-bit interrupt data fields. Hardware implementations supporting only 16-bit interrupt data treat this field as Rsvd.
15:0	RW-L	0000h	Uncore	Interrupt Message data (IMD) Data value in the interrupt request.

2.21.25 IEADDR_REG—Invalidation Event Address Register

This register specifies the Invalidation Event Interrupt message address.

This register is treated as RsvdZ by implementations reporting Queued Invalidation (QI) as not supported in the Extended Capability register.

B/D/F/Type:0/0Address Offset:A8Reset Value:000Access:RWSize:32BIOS Optimal Default0h			/0/VCOPF ABh 00000h ·L bits	REMAP
Bit	Access	Reset Value	RST/ PWR	Description
31:2	RW-L	00000000h	Uncore	Message address (MA) When fault events are enabled, the contents of this register specify the DWord-aligned address (bits 31:2) for the interrupt request.
1:0	RO	0h		Reserved (RSVD)

2.21.26 IEUADDR_REG—Invalidation Event Upper Address Register

This register specifies the Invalidation Event interrupt message upper address.

B/D/F/Type: Address Offset: Reset Value: Access: Size:		0/0/0/VC0PRI AC-AFh 00000000h RW-L 32 bits		ЕМАР
Bit	Access	Reset Value	RST/ PWR	Description
31:0	RW-L	00000000h	Uncore	Message Upper Address (MUA) Hardware implementations supporting Queued Invalidations and Extended Interrupt Mode are required to implement this register. Hardware implementations not supporting Queued Invalidations or Extended Interrupt Mode may treat this field as RsvdZ.

2.21.27 IRTA_REG—Interrupt Remapping Table Address Register

This register provides the base address of Interrupt remapping table. This register is treated as RsvdZ by implementations reporting Interrupt Remapping (IR) as not supported in the Extended Capability register.

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Def		0/0/0/VC0PF B8-BFh 00000000000 RW-L 64 bits fault 00000000h		REMAP 100000h
Bit	Access	Reset Value	RST/ PWR	Description
63:39	RO	0h		Reserved (RSVD)
38:12	RW-L	0000000h	Uncore	Interrupt Remapping Table Address (IRTA) This field points to the base of 4 KB aligned interrupt remapping table. Hardware ignores and does not implement bits 63:HAW, where HAW is the host address width. Reads of this field returns value that was last programmed to it.
11:4	RO	0h		Reserved (RSVD)
3:0	RW-L	0h	Uncore	Size (S) This field specifies the size of the interrupt remapping table. The number of entries in the interrupt remapping table is $2^{(X+1)}$, where X is the value programmed in this field.

2.21.28 IVA_REG—Invalidate Address Register

This register provides the DMA address whose corresponding IOTLB entry needs to be invalidated through the corresponding IOTLB Invalidate register. This register is a write-only register.

B/D/F/Type: 0/0/0/V Address Offset: 100-100 Reset Value: 000000 Access: RW Size: 64 bits BIOS Optimal Default 000000		0/0/VC0PR 0–107h 000000000 bits 000000h	EMAP 00000h	
Bit	Access	Reset Value	RST/ PWR	Description
63:39	RO	0h		Reserved (RSVD)
38:12	RW	0000000h	Uncore	Address (ADDR) Software provides the DMA address that needs to be page- selectively invalidated. To make a page-selective invalidation request to hardware, software must first write the appropriate fields in this register, and then issue the appropriate page- selective invalidate command through the IOTLB_REG. Hardware ignores bits 63: N, where N is the maximum guest address width (MGAW) supported.
11:7	RO	0h		Reserved (RSVD)
6	RW	Oh	Uncore	 Invalidation Hint (IH) The field provides hint to hardware about preserving or flushing the non-leaf (page-directory) entries that may be cached in hardware: 0 = Software may have modified both leaf and non-leaf page-table entries corresponding to mappings specified in the ADDR and AM fields. On a page-selective invalidation request, hardware must flush both the cached leaf and non-leaf page-table entries corresponding to the mappings specified by ADDR and AM fields. 1 = Software has not modified any non-leaf page-table entries corresponding to the ADDR and AM fields. On a page-selective invalidation request, hardware may preserve the cached non-leaf page-table entries corresponding to mappings specified in the ADDR and AM fields.
5:0	RW	00h	Uncore	Address Mask (AM)The value in this field specifies the number of low-order bits of the ADDR field that must be masked for the invalidation operation. This field enables software to request invalidation of contiguous mappings for size-aligned regions. For example:MaskADDR bitsPagesValuemaskedinvalidated0None11122213:124314:128415:1216When invalidating mappings for super-pages, software must specify the appropriate mask value. For example, when invalidating mapping for a 2 MB page, software must specify an address mask value of at least 9.Hardware implementations report the maximum supported mask value through the Capability register.

2.21.29 IOTLB_REG—IOTLB Invalidate Register

This register invalidates IOTLB. The act of writing the upper byte of the IOTLB_REG with IVT field set causes the hardware to perform the IOTLB invalidation.

B/D/F/ Address Reset Va Access: Size: BIOS Op	Type: Offset: alue: otimal De	0/0 108 000 RW 64 fault 000	/0/0/VCOPREMAP 08-10Fh 00000000000000 W, RW-V, RO-V 4 bits 00000000000		
Bit	Access	Reset Value	RST/ PWR	Description	
63	RW-V	Oh	Uncore	Invalidate IOTLB (IVT) Software requests IOTLB invalidation by setting this field. Software must also set the requested invalidation granularity by programming the IIRG field. A Hardware clears the IVT field to indicate the invalidation request is complete. Hardware also indicates the granularity at which the invalidation operation was performed through the IAIG field. Software must not submit another invalidation request through this register while the IVT field is set, nor update the associated Invalidate Address register. Software must not submit IOTLB invalidation requests when there is a context-cache invalidation request pending at this remapping hardware unit. Hardware implementations reporting write-buffer flushing requirement (RWBF=1 in Capability register) must implicitly perform a write buffer flushing before invalidation the IOTLB.	
62:62	RO	0h		Reserved (RSVD)	
61:60	RW	Oh	Uncore	 IOTLB Invalidation Request Granularity (IIRG) When requesting hardware to invalidate the IOTLB (by setting the IVT field), software writes the requested invalidation granularity through this field. The following are the encodings for the field. 00 = Reserved. 01 = Global invalidation request. 10 = Domain-selective invalidation request. The target domainid must be specified in the DID field. 11 = Page-selective invalidation request. The target address, mask and invalidation hint must be specified in the Invalidate Address register, and the domain-id must be provided in the DID field. Hardware implementations may process an invalidation request by performing invalidation at a coarser granularity than requested. Hardware indicates completion of the invalidation request by clearing the IVT field. At this time, the granularity at which actual invalidation was performed is reported through the IAIG field. 	
59:59	RO	0h		Reserved (RSVD)	

B/D/F/Type: Address Offset: Reset Value: Access: Size: BIOS Optimal Default		0/0 108 000 RW 64 fault 000	0/0/0/VC0PREMAP 108-10Fh 000000000000000h RW, RW-V, RO-V 64 bits 00000000000h		
Bit	Access	Reset Value	RST/ PWR	Description	
58:57	RO-V	Oh	Uncore	 IOTLB Actual Invalidation Granularity (IAIG) Hardware reports the granularity at which an invalidation request was processed through this field when reporting invalidation completion (by clearing the IVT field). The following are the encodings for this field. 00 = Reserved. This indicates hardware detected an incorrect invalidation request and ignored the request. Examples of incorrect invalidation requests include detecting an unsupported address mask value in Invalidate Address register for page-selective invalidation requests. 01 = Global Invalidation performed. This could be in response to a global, domain-selective, or page-selective invalidation request. 10 = Domain-selective invalidation performed using the domain-id specified by software in the DID field. This could be in response to a domain-selective or a page-selective invalidation request. 11 = Domain-page-selective invalidation performed using the address, mask and hint specified by software in the Invalidate Address register and domain-id specified in DID field. This can be in response to a page-selective invalidation request. 	
56:50	RO	0h		Reserved (RSVD)	
49	RW	Оb	Uncore	 Drain Reads (DR) This field is ignored by hardware if the DRD field is reported as clear in the Capability register. When the DRD field is reported as set in the Capability register, the following encodings are supported for this field: 1 = Hardware may complete the IOTLB invalidation without draining any translated DMA read requests. 1 = Hardware must drain DMA read requests. 	
48	RW	ОЬ	Uncore	Drain Writes (DW)This field is ignored by hardware if the DWD field is reported as clear in the Capability register. When the DWD field is reported as set in the Capability register, the following encodings are supported for this field:0 = Hardware may complete the IOTLB invalidation without draining DMA write requests.1 = Hardware must drain relevant translated DMA write requests.	
47:40	RO	0h		Reserved (RSVD)	
39:32	RW	00h	Uncore	Domain-ID (DID) This field indicates the ID of the domain whose IOTLB entries need to be selectively invalidated. This field must be programmed by software for domain-selective and page-selective invalidation requests. The Capability register reports the domain-id width supported by hardware. Software must ensure that the value written to this field is within this limit. Hardware ignores and not implements bits 47:(32+N), where N is the supported domain-id width reported in the Capability register.	
31:0	RO	0h		Reserved (RSVD)	

§§

